Lecture 02 : Partition, Riemann intergrability and One example (Contd.).
Lecture 03 : Condition of integrability.
Lecture 04 : Theorems on Riemann integrations.
Lecture 05 : Examples.
Lecture 06 : Examples (Contd.).
Lecture 07 : Reduction formula.
Lecture 08 : Reduction formula (Contd.).
Lecture 09 : Improper Integral.
Lecture 10 : Improper Integral (Contd.).
Lecture 11 : Improper Integral (Contd.).
Lecture 12 : Improper Integral (Contd.).
Lecture 13 : Introduction to Beta and Gamma Function.
Lecture 14 : Beta and Gamma Function.
Lecture 15 : Differentiation under Integral Sign.
Lecture 16 : Differentiation under Integral Sign (Contd.).
Lecture 17 : Double Integral.
Lecture 18 : Double Integral over a Region E.
Lecture 19 : Examples of Integral over a Region E.
Lecture 20 : Change of variables in a Double Integral.
Lecture 21 : Change of order of Integration.
Lecture 22 : Triple Integral.
Lecture 23 : Triple Integral (Contd.).
Lecture 24 : Area of Plane Region.
Lecture 25 : Area of Plane Region (Contd.).
Lecture 26 : Rectification.
Lecture 27 : Rectification (Contd.).
Lecture 28 : Surface Integral.
Lecture 29 : Surface Integral (Contd.).
Lecture 30 : Surface Integral (Contd.).
Lecture 31 : Volume Integral, Gauss Divergence Theorem.
Lecture 32 : Vector Calculus.
Lecture 33 : Limit, Continuity, Differentiability.
Lecture 34 : Successive Differentiation.
Lecture 35 : Integration of Vector Function.
Lecture 36 : Gradient of a Function.
Lecture 37 : Divergence & Curl.
Lecture 38 : Divergence & Curl Examples.
Lecture 39 : Divergence & Curl important Identities.
Lecture 40 : Level Surface Relevant Theorems.
Lecture 41 : Directional Derivative (Concept & Few Results).
Lecture 42 : Directional Derivative (Concept & Few Results) (Contd.).
Lecture 43 : Directional Derivatives, Level Surfaces.
Lecture 44 : Application to Mechanics.
Lecture 45 : Equation of Tangent, Unit Tangent Vector.
Lecture 46 : Unit Normal, Unit binormal, Equation of Normal Plane.
Lecture 47 : Introduction and Derivation of Serret-Frenet Formula, few results.
Lecture 48 : Example on binormal, normal tangent, Serret-Frenet Formula.
Lecture 49 : Osculating Plane, Rectifying plane, Normal plane.
Lecture 50 : Application to Mechanics, Velocity, speed , acceleration.
Lecture 51 : Angular Momentum, Newton's Law.
Lecture 52 : Example on derivation of equation of motion of particle.
Lecture 53 : Line Integral.
Lecture 54 : Surface integral.
Lecture 55 : Surface integral (Contd.).
Lecture 56 : Green's Theorem & Example.
Lecture 57 : Volume integral, Gauss theorem.
Lecture 58 : Gauss divergence theorem.
Lecture 59 : Stoke's Theorem.Lecture 60 : Overview of Course.
Write a public review