Nar	ne : .	• • • • • • •				
Roll	No. :	:			A Agency (y' Executing and Explana)	
Invi	gilato	or's S	ignature :			
	CS/	B.Te	ch(EE-(N)/EEE-(N)/IC	E(N)/SEM	I-3/EC(EE)-302/2011-12	
			20	11		
		Dl	GITAL ELECTI	RONIC	CIRCUITS	
Time Allotted : 3 Hours					Full Marks: 70	
		Th	e figures in the mar	gin indica	te full marks.	
Ca	andid	lates		their ansv s practica	vers in their own words able.	
1.	Cho	oose t	(Multiple Choice		nestions) mathematical ny ten of the following: 10 × 1 = 10	
	i)	i) The value of base x for which (128) ₁₀ = (1003) _{x} is				
		a)	3	b)	4	
		c)	5	d)	6.	
	ii)	A +	$A^{\dagger}B + A^{\dagger}B^{\dagger}C + A^{\dagger}$	$B^{\dagger}C^{\dagger}D$ +	is equal to	
		a)	$A + B + C + \dots$	b)	$A^{\dagger} + B^{\dagger} + C^{\dagger} + D^{\dagger} + \dots$	
		c)	1	d)	0.	
	iii) The output of a gate is low if and only if all its input are high. It is true for					
		a)	NOR gate	b)	AND gate	
		c)	NAND gate	d)	X-NOR gate.	

[Turn over

3155(N)

a) - 256

b) - 255

c) - 128

- d) 127.
- v) The Gray Code of $(11001100)_2$ is
 - a) 10101010
- b) 1001100
- c) 10111000
- d) 1110001.
- vi) Which logic family has the better noise margin?
 - a) ECL

b) DTL

c) MOS

- d) TTL.
- vii) A decoder with enable input can be used as
 - a) parity generator
- b) encoder
- c) demultiplexer
- d) multiplexer
- viii) A flip-flop is also known as
 - a) astable multivibrator
 - b) bistable multivibrator
 - c) a switch
 - d) none of these.
- ix) The number of flip-flops required for a mod-16 ring counter is
 - a) 4

b) 8

c) 15

- d) 16.
- x) A switch-tail ring counter is made by using a single D flip-flop. The resulting circuit is
 - a) SR flip-flop
- b) JK flip-flop
- c) D flip-flop
- d) T flip-flop.

- xi) The number of comparisons carried out in a 4-bit flash type ADC is
 - a) 16

b) 15

c) 4

- d) none of these.
- xii) A decade counter counts up to
 - a) 9

b) 10

c) 11

d) 12.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Obtain the logic expression for a 3-input majority function and hence implement it using only NAND gates.
- 3. Design a full subtractor using two half-subtractors and one extra gate, if necessary.
- 4. Design a 4-bit comparator. Show the output functions only.
- 5. Design a D flip-flop into a JK flip-flop.
- 6. Design a mod-7 ripple counter using CLR lines of JK flip-flops.

GROUP - C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Simplify the following function using *K*-map : $f = \sum m (0, 5, 8, 10, 11, 14, 15) + \sum d (3, 13)$
 - b) Simplify the following function using tabular method : $f(A, B, C, D) = \sum m(0, 2, 3, 6, 7, 8, 10, 12, 13).$

7 + 8

- 8. a) Implement the following function using multiplexer:
 - b) Explain race-around condition in SR flip-flop. Explain how this condition is avoided in JK flip-flop.
 - c) Draw the timing diagram of a 3-bit ring counter.

$$4 + (3 + 4) + 4$$

- 9. a) Design a 4-bit up/down synchronous serial counter using JK flip-flops and other necessary logic gates. Use one direction control input, D. If D=0, the counter will count up and for D=1, the counter will count down.
 - b) Draw the circuit diagram of a mod-8 ripple counter using JK flip-flops. Draw the output waveforms also.
 Obtain the state table and hence show the corresponding state diagram.
- 10. a) Draw a neat diagram for a weighted resistor type DAC and explain its operation.
 - b) Describe the operation of successive approximation type ADC. How many clock pulses are required in worst case for each conversion cycle of an 8-bit SAR type ADC? 7 + (7 + 1)
- 11. Write short notes on any *three* of the following : 3×5
 - a) Switch-tail ring counter
 - b) Lock-out phenomena in counters
 - c) Parity checker/generator
 - d) PLA
 - e) Totempole configuration of TTL.
