FELSem-II (Rev) 14/6/2012

(Two papers due to re-exam) 14/06/2012 original paper

(3 Hours)

GN-1018

[Total Marks 100

N.B.: 1. Question No. 1 is compulsory.

- 2. Attempt any four questions from remaining six questions.
- 3. Draw sketches wherever necessary.

Q.1.a. Evaluate :
$$\int_0^1 (x \log x)^4 dx$$
 (5)

b. Solve :
$$\frac{dr}{d\theta} = r \tan -\frac{r^2}{\cos \theta}$$
 (5)

c.Evaluate:
$$\int_0^{a\sqrt{3}} \int_0^{\sqrt{x^2 + a^2}} \frac{x \, dy \, dx}{y^2 + x^2 + a^2}$$
 (5)

d. Find by double integration the area enclosed by
$$y^2 = x^3$$
 and $y = x$ (5)

Q.2.a. Solve
$$(4xy + 3y^2 - x) dx + x (x + 2y) dy = 0$$
 (6)

b. Change the order of integration
$$\int_0^a \int_{\sqrt{a^2-y^2}}^{y+a} f(x,y) \, dx \, dy$$
 (6)

c. Prove that
$$\int_0^\infty \frac{dx}{(g^x+g^{-x})^n} = \frac{1}{4} \beta(\frac{n}{2}, \frac{n}{2})$$
 and hence evaluate $\int_0^\infty sech^8 x \, dx$. (8)

taking h=0.2 given
$$\frac{dy}{dx} = x + y \& \tilde{y}(0) = 1$$
.

b. Evaluate
$$\int_0^2 \int_0^x \int_0^{2x+2y} e^{x+y+z} dz dy dx$$
 (6)

c. Evaluate by changing to polar coordinates
$$\int_0^1 \int_x^{\sqrt{2x-x^2}} (x^2 + y^2) \, dy dx$$
 (8)

Q.4.a. Show that
$$\int_0^\infty \frac{\tan^{-1} ax}{x(1+x^2)} dx = \frac{\pi}{2} \log(1+a)$$
 (6)

b. Evaluate
$$\int_R \int \frac{y \, dx \, dy}{(a-x)\sqrt{ax-y^2}}$$
 where R is the region bounded by $y^2 = ax \otimes y = x$.

c. Solve by the method of variation of parameters
$$(D^2 - 2D + 2)y = e^x \tan x$$
 (8)

Q.5.a. Solve
$$(D^2 + 2)y = e^x \cos x + x^2 e^{3x}$$
 (6)

b. Using Taylor's Method Solve
$$\frac{dy}{dx} = x^2 - y$$
 with $y(0)=1$. Also find y at x = 0.1 (6)

c. Find the Volume of the Tetrahedron bounded by the planes
$$x = 0$$
, $y = 0$, $z = 0$ & $x+y+z = a$ (8)

Q.6.a. In a single closed circuit, the current i at any time t, is given by
$$Ri + L\frac{di}{dt} = E$$
.

Find the current i at a time t if at t = 0, i = 0 and L, R, E are constants.

b. Find the mass of the octant of the ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, the density at any point being kxyz. (6)

(6)

(6)

c. Using Runge kutta 's Fourth order method find y at x = 0.2 if
$$\frac{dy}{dx} = x + y^2$$
 given that y=1 (8) when x = 0 in steps of h=0.1.

b. Find the length of the cardiode
$$r = a(1 + \cos \theta)$$
 which lies outside the circle $r + a \cos \theta = 0$ (6)

c. Solve:
$$(1+2x)^2 \frac{d^2y}{dx^2} - 6(1+2x)\frac{dy}{dx} + 16y = 8(1+2x)^2$$
 (8)

Con. 3432-12.

18/5/2012 FE Sem-II [Revo Applied maths II GN-4865

(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four questions from the remaining six questions.
- (3) Figures to the right indicate full marks.

Q1.a) Evaluate
$$\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} \int_{0}^{\pi/2} \sqrt{\sin \theta} d\theta$$
 (20)

b) Solve
$$\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0$$

c) Show that
$$\int_{0}^{\infty} \frac{\tan^{-1} ax}{x(1+x^{2})} dx = \frac{\pi}{2} \log(1+a)$$

d) Change the order of integration $\int\limits_{0}^{1} \int\limits_{2y}^{2\left(\mathbf{l}+\sqrt{\mathbf{l}-y}\right)} f(x,y) dx dy$

Q2a) Solve
$$(D-1)^2(D^2+1)y = e^x + \sin^2(x/2)$$
 (06)

b) Show that
$$\int_{0}^{\infty} xe^{-x^{8}} dx \int_{0}^{\infty} x^{2}e^{-x^{4}} dx = \frac{\pi}{16\sqrt{2}}$$
 (06)

c) Using Runge-Kutta 4th order method find an approximate value of y given that (08)

$$\frac{dy}{dx} = x + y^2$$
 with $x_0 = 0$, $y_0 = 1$ at $x = 0.1$ and $x = 0.2$

Q3 a) In a circuit containing inductance L, resistance R, voltage E, the current I is (06)

given by $L\frac{dI}{dt} + RI = E$. Find the current I at time t if at t = 0, I = 0 and L, R, E

are constant.

b) Find the area common of the circles
$$r = a$$
 and $r = 2a\cos\theta$

d Solve
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 4y = \cos\log x + x \sin\log x$$
 (08)

(06)

Q4 a) Find the volume bounded by
$$y^2 = x$$
, $x^2 = y$ and the plane $z = 0$ and $x + y + z = 2$ (06)

b) Evaluate
$$\int_{0}^{\log 2} \int_{0}^{x+y} \int_{0}^{x+y+z} dx dy dz$$
 (06)

c) Solve by method of variation of parameters
$$(D^2 - 3D + 2)y = \frac{e^x}{1 + e^x}$$
 (08)

Q5a) Using Euler's method find the approximate value of y where
$$\frac{dy}{dx} = x + y$$
, $y(0) = 1$ (06)

b) A lamina is bounded by $y = x^2 - 3x$, y = 2x. If the density at any point is given by $\frac{24}{25}xy$. (06)

Find the mass of lamina.

taking h=0.2 at x=1.

c) Change the order of integration and evaluate
$$\int_{0}^{a} \int_{x^{2}}^{2a-x} xy dy dx$$
 (08)

Q6 a) Change to polar coordinates and evaluate
$$\int_{0}^{\frac{a}{\sqrt{2}}} \int_{y}^{\sqrt{a^2-y^2}} \log(x^2+y^2) dx dy \tag{06}$$

b) Find the length of the cardiode
$$r = a(1 + \cos \theta)$$
 which lies out side the circle (06)

 $r + a\cos\theta = 0$

c) State Duplication formula of Gamma Function and prove that

$$\beta(n,n) \times \beta(n+\frac{1}{2},n+\frac{1}{2}) = \frac{\pi}{n} 2^{1-4n}$$
 (08)

Q7. a) Find the volume bounded by cylinder
$$y^2 + x^2 = 4$$
 and the plane $z = 0$ (06)

and v+z=4

b) Solve
$$y(xy + 2x^2y^2)dx + x(xy - x^2y^2)dy = 0$$
 (06)

c) Solve
$$(D^4 + 2D^2 + 1)y = x^2 \cos x$$
 (08)