

Code No.: 5183/S

FACULTY GOF GENGINEERING TO BE TO BE THE STATE OF THE STA B.E. 3/4 (Mech.) I Semester (Suppl.) Examination, June 2012 APPLIED THERMODYNAMICS

Time: 3 Hours | = beed2 in 2.7 = notice avenue in 2 in a

[Max. Marks: 75

2. 200 Kurkg, Specific gravity of fuel = 0 / TV, Bruss Note: Answer all questions from Part A. Answer any five questions volence At on Afrom Bart B been soneled prings usegan five a finding it is

PART - A (25 Marks)

1. Mention at least four practical applications of the compressed air.	3
2. How does clearance volume help in the working of a reciprocating air compressor?	2
3. How are IC engines classified on the basis of i) basic cycle of operation and ii) mode of fuel igintion employed? Output Description:	3
4. Mention at least two prominent differences between simple and Zenith carburetors.	2
5. How do premixed and diffusion flames differ vis-a-vis combustion in an IC engine?	3
6. Define "ignition delay" as referred to an SI engine and give its significance.	2
7. Distinguish between fire-tube and water-tube boilers.	3
8. Explain briefly, the "principle of evaporative cooling" vis-a-vis a cooling tower.	2
steam power cycle.	2
10. Briefly explain the significance of "Critical pressure ratio" as referred to a steam	3
	2
PART - R (5×10-50 Montes)	

PART - B (5×10=50 Marks)

11. A single stage reciprocating air compressor is needed to handle 30 m³ of free air per hour at 1 bar. The delivery pressure at 450 rpm is 6.5 bar. Calculate i) clearance ratio, ii) indicated mean effective pressure, iii) brake power input needed, if the mechanical efficiency is 80%, isothermal efficiency is 76% and volumetric efficiency is 75%. Assume the compressor to be "single acting type".

10

	NOTE CONTROL TO THE STATE OF	
	With neat and relevant schematic diagram, P-V diagram and T-s diagram, explain the working of a 4-stroke cycle S.I. (petrol) engine.	10
13.	A 4-cylinder 4-stroke petrol engine has been subjected to a laboratory test and the following information is available: Cylinder diameter = 6.4 cm, Cylinder stroke = 9 cm, Clearance volume = 50 cm^3 ; Fuel consumption = 7.5 l/h ; Speed = 2400 rpm ; Calorific value of the fuel = 47700 KJ/kg ; Specific gravity of fuel = 0.717 ; Brake drum diameter = 73.5 cm ; Rope diameter = 2.5 cm ; Load on brake drum running at $\frac{1}{3}$ engine by belts speed spring balance read 60 kg and 8 kg; Mechanical efficiency = 80% .	
	Determine:	
	i) air-standard efficiency	
	ii) brake thermal efficiency, and	
	iii) indicated thermal efficiency.	
	Also find the relative efficiency of the engine. Take $\gamma = 1.4$.	10
14.	Explain clearly "normal combustion" and "abnormal combustion" in C.I. (Diesel) engines. Mention the "additives" that could bring down "knocking" here.	10
15.	Draw a neat sketch of Babcock and Wilcox water-tube steam boiler and clearly explain the working of the same. How does it differ from a forced connection water tube boiler?	
	사용 보다	10
16.	Dry saturated steam at 10 bar (abs) is expanded in a steam nozzle to 0.4 bar (abs). The throat area is 7cm^2 , while the inlet velocity is negligible. Calculate i) the mass rate of flow of steam and ii) the exit area, assuming isentropic flow. Take the index of expansion to be, $n = 1.135$, for dry saturated steam.	10
17.	Draw the P-V and T-s diagrams and schematic diagram of a Rankine cycle and clearly explain its principle of operation.	10