

ALL IMPORTANT

 CHEAT SHEETS BY STANFORD UNIVERSITY \& MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROBABILITY, STATISTICS, ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, \& DEEP LEARNING

15/10/2020
COMPILED BY ABHISHEK PRASAD

Probability-the Science of Uncertainty and Data

Probability

Probability models and axioms

Definition (Sample space) A sample space Ω is the set of all possible outcomes. The set's elements must be mutually exclusive, collectively exhaustive and at the right granularity.
Definition (Event) An event is a subset of the sample space. Probability is assigned to events.
Definition (Probability axioms) A probability law \mathbb{P} assigns probabilities to events and satisfies the following axioms:
Nonnegativity $\mathbb{P}(A) \geq 0$ for all events A.
Normalization $\mathbb{P}(\Omega)=1$.
(Countable) additivity For every sequence of events A_{1}, A_{2}, \ldots such that $A_{i} \cap A_{j}=\varnothing: \mathbb{P}\left(\underset{i}{\bigcup} A_{i}\right)=\sum_{i} \mathbb{P}\left(A_{i}\right)$.
Corollaries (Consequences of the axioms)

- $\mathbb{P}(\varnothing)=0$.
- For any finite collection of disjoint events A_{1}, \ldots, A_{n}, $\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)$.
- $\mathbb{P}(A)+\mathbb{P}\left(A^{c}\right)=1$.
- $\mathbb{P}(A) \leq 1$.
- If $A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$.
- $\mathbb{P}(A \cup B) \leq \mathbb{P}(A)+\mathbb{P}(B)$.

Example (Discrete uniform law) Assume Ω is finite and consists of n equally likely elements. Also, assume that $A \subset \Omega$ with k elements. Then $\mathbb{P}(A)=\frac{k}{n}$.

Conditioning and Bayes' rule

Definition (Conditional probability) Given that event B has occurred and that $P(B)>0$, the probability that A occurs is

$$
\mathbb{P}(A \mid B) \triangleq \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} .
$$

Remark (Conditional probabilities properties) They are the same as ordinary probabilities. Assuming $\mathbb{P}(B)>0$:

- $\mathbb{P}(A \mid B) \geq 0$.
- $\mathbb{P}(\Omega \mid B)=1$
- $\mathbb{P}(B \mid B)=1$.
- If $A \cap C=\varnothing, \mathbb{P}(A \cup C \mid B)=\mathbb{P}(A \mid B)+\mathbb{P}(C \mid B)$.

Proposition (Multiplication rule)
$\mathbb{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2} \mid A_{1}\right) \cdots \mathbb{P}\left(A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right)$.
Theorem (Total probability theorem) Given a partition $\left\{A_{1}, A_{2}, \ldots\right\}$ of the sample space, meaning that $\cup A_{i}=\Omega$ and the events are disjoint, and for every event B, we have

$$
\mathbb{P}(B)=\sum_{i} \mathbb{P}\left(A_{i}\right) \mathbb{P}\left(B \mid A_{i}\right) .
$$

Theorem (Bayes' rule) Given a partition $\left\{A_{1}, A_{2}, \ldots\right\}$ of the sample space, meaning that $\bigcup_{i} A_{i}=\Omega$ and the events are disjoint, and if $\mathbb{P}\left(A_{i}\right)>0$ for all i, then for every event B, the conditional probabilities $\mathbb{P}\left(A_{i} \mid B\right)$ can be obtained from the conditional probabilities $\mathbb{P}\left(B \mid A_{i}\right)$ and the initial probabilities $\mathbb{P}\left(A_{i}\right)$ as follows:

$$
\mathbb{P}\left(A_{i} \mid B\right)=\frac{\mathbb{P}\left(A_{i}\right) \mathbb{P}\left(B \mid A_{i}\right)}{\sum_{j} \mathbb{P}\left(A_{j}\right) \mathbb{P}\left(B \mid A_{j}\right)}
$$

Independence

Definition (Independence of events) Two events are independent if occurrence of one provides no information about the other. We say that A and B are independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

Equivalently, as long as $\mathbb{P}(A)>0$ and $\mathbb{P}(B)>0$,

$$
\mathbb{P}(B \mid A)=\mathbb{P}(B) \quad \mathbb{P}(A \mid B)=\mathbb{P}(A)
$$

Remarks

- The definition of independence is symmetric with respect to A and B.
- The product definition applies even if $\mathbb{P}(A)=0$ or $\mathbb{P}(B)=0$. Corollary If A and B are independent, then A and B^{c} are independent. Similarly for A^{c} and B, or for A^{c} and B^{c}.
Definition (Conditional independence) We say that A and B are independent conditioned on C, where $\mathbb{P}(C)>0$, if

$$
\mathbb{P}(A \cap B \mid C)=\mathbb{P}(A \mid C) \mathbb{P}(B \mid C)
$$

Definition (Independence of a collection of events) We say that events $A_{1}, A_{2}, \ldots, A_{n}$ are independent if for every collection of distinct indices $i_{1}, i_{2}, \ldots, i_{k}$, we have

$$
\mathbb{P}\left(A_{i_{1}} \cap \ldots \cap A_{i_{k}}\right)=\mathbb{P}\left(A_{i_{1}}\right) \cdot \mathbb{P}\left(A_{i_{2}}\right) \cdots \mathbb{P}\left(A_{i_{k}}\right)
$$

Counting

This section deals with finite sets with uniform probability law. In this case, to calculate $\mathbb{P}(A)$, we need to count the number of elements in A and in Ω.
Remark (Basic counting principle) For a selection that can be done in r stages, with n_{i} choices at each stage i, the number of possible selections is $n_{1} \cdot n_{2} \cdots n_{r}$.
Definition (Permutations) The number of permutations (orderings) of n different elements is

$$
n!=1 \cdot 2 \cdot 3 \cdots n
$$

Definition (Combinations) Given a set of n elements, the number of subsets with exactly k elements is

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Definition (Partitions) We are given an n-element set and nonnegative integers $n_{1}, n_{2}, \ldots, n_{r}$, whose sum is equal to n. The number of partitions of the set into r disjoint subsets, with the $i^{\text {th }}$ subset containing exactly n_{i} elements, is equal to

$$
\binom{n}{n_{1}, \ldots, n_{r}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}
$$

Remark This is the same as counting how to assign n distinct elements to r people, giving each person i exactly n_{i} elements.

Discrete random variables

Probability mass function and expectation
Definition (Random variable) A random variable X is a function of the sample space Ω into the real numbers (or \mathbb{R}^{n}). Its range can be discrete or continuous
Definition (Probability mass funtion (PMF)) The probability law of a discrete random variable X is called its PMF. It is defined as

$$
p_{X}(x)=\mathbb{P}(X=x)=\mathbb{P}(\{\omega \in \Omega: X(\omega)=x\})
$$

Properties
$p_{X}(x) \geq 0, \forall x$.
$\sum_{x} p_{X}(x)=1$.
Example (Bernoulli random variable) A Bernoulli random variable X with parameter $0 \leq p \leq 1(X \sim \operatorname{Ber}(p))$ takes the following values:

$$
X= \begin{cases}1 & \text { w.p. } p \\ 0 & \text { w.p. } 1-p .\end{cases}
$$

An indicator random variable of an event ($I_{A}=1$ if A occurs) is an example of a Bernoulli random variable.
Example (Discrete uniform random variable) A Discrete uniform random variable X between a and b with $a \leq b(X \sim \operatorname{Uni}[a, b])$ takes any of the values in $\{a, a+1, \ldots, b\}$ with probability $\frac{1}{b-a+1}$. Example (Binomial random variable) A Binomial random variable X with parameters n (natural number) and $0 \leq p \leq 1$ $(X \sim \operatorname{Bin}(n, p))$ takes values in the set $\{0,1, \ldots, n\}$ with probabilities $p_{X}(i)=\binom{n}{i} p^{i}(1-p)^{n-i}$.
It represents the number of successes in n independent trials where each trial has a probability of success p. Therefore, it can also be seen as the sum of n independent Bernoulli random variables, each with parameter p.
Example (Geometric random variable) A Geometric random variable X with parameter $0 \leq p \leq 1(X \sim \operatorname{Geo}(p))$ takes values in the set $\{1,2, \ldots\}$ with probabilities $p_{X}(i)=(1-p)^{i-1} p$.
It represents the number of independent trials until (and including) the first success, when the probability of success in each trial is p. Definition (Expectation/mean of a random variable) The expectation of a discrete random variable is defined as

$$
\mathbb{E}[X] \triangleq \sum_{x} x p_{X}(x)
$$

assuming $\sum_{x}|x| p_{X}(x)<\infty$.
Properties (Properties of expectation)

- If $X \geq 0$ then $\mathbb{E}[X] \geq 0$.
- If $a \leq X \leq b$ then $a \leq \mathbb{E}[X] \leq b$.
- If $X=c$ then $\mathbb{E}[X]=c$.

Example Expected value of know r.v.

- If $X \sim \operatorname{Ber}(p)$ then $\mathbb{E}[X]=p$.
- If $X=I_{A}$ then $\mathbb{E}[X]=\mathbb{P}(A)$.
- If $X \sim \operatorname{Uni}[a, b]$ then $\mathbb{E}[X]=\frac{a+b}{2}$.
- If $X \sim \operatorname{Bin}(n, p)$ then $\mathbb{E}[X]=n p$.
- If $X \sim \operatorname{Geo}(p)$ then $\mathbb{E}[X]=\frac{1}{p}$.

Theorem (Expected value rule) Given a random variable X and a Properties (Properties of joint PMF)
function $g: \mathbb{R} \rightarrow \mathbb{R}$, we construct the random variable $Y=g(X)$.
Then

$$
\sum_{y} y p_{Y}(y)=\mathbb{E}[Y]=\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)
$$

Remark (PMF of $Y=g(X))$ The PMF of $Y=g(X)$ is $p_{Y}(y)=\sum_{x: g(x)=y} p_{X}(x)$.
Remark In general $g(\mathbb{E}[X]) \neq \mathbb{E}[g(X)]$. They are equal if $g(x)=a x+b$.
Variance, conditioning on an event, multiple r.v.
Definition (Variance of a random variable) Given a random variable X with $\mu=\mathbb{E}[X]$, its variance is a measure of the spread of the random variable and is defined as

$$
\operatorname{Var}(X) \triangleq \mathbb{E}\left[(X-\mu)^{2}\right]=\sum_{x}(x-\mu)^{2} p_{X}(x)
$$

Definition (Standard deviation)

$$
\sigma_{X}=\sqrt{\operatorname{Var}(X)}
$$

Properties (Properties of the variance)

- $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$, for all $a \in \mathbb{R}$.
- $\operatorname{Var}(X+b)=\operatorname{Var}(X)$, for all $b \in \mathbb{R}$.
- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.
- $\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}$.

Example (Variance of known r.v.)

- If $X \sim \operatorname{Ber}(p)$, then $\operatorname{Var}(X)=p(1-p)$.
- If $X \sim \operatorname{Uni}[a, b]$, then $\operatorname{Var}(X)=\frac{(b-a)(b-a+2)}{12}$.
- If $X \sim \operatorname{Bin}(n, p)$, then $\operatorname{Var}(X)=n p(1-p)$.
- If $X \sim \operatorname{Geo}(p)$, then $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

Proposition (Conditional PMF and expectation, given an event) Given the event A, with $\mathbb{P}(A)>0$, we have the following

- $p_{X \mid A}(x)=\mathbb{P}(X=x \mid A)$.
- If A is a subset of the range of X, then:

$$
p_{X \mid A}(x) \triangleq p_{X \mid\{X \in A\}}(x)= \begin{cases}\frac{1}{\mathrm{P}(A)} p_{X}(x), & \text { if } x \in A \\ 0, & \text { otherwise }\end{cases}
$$

- $\sum_{x} p_{X \mid A}(x)=1$.
- $\mathbb{E}[X \mid A]=\sum_{x} x p_{X \mid A}(x)$.
- $\mathbb{E}[g(X) \mid A]=\sum_{x} g(x) p_{X \mid A}(x)$.

Proposition (Total expectation rule) Given a partition of disjoint events A_{1}, \ldots, A_{n} such that $\sum_{i} \mathbb{P}\left(A_{i}\right)=1$, and $\mathbb{P}\left(A_{i}\right)>0$,

$$
\mathbb{E}[X]=\mathbb{P}\left(A_{1}\right) \mathbb{E}\left[X \mid A_{1}\right]+\cdots+\mathbb{P}\left(A_{n}\right) \mathbb{E}\left[X \mid A_{n}\right]
$$

Definition (Memorylessness of the geometric random variable) When we condition a geometric random variable X on the event $X>n$ we have memorylessness, meaning that the "remaining time" $X-n$, given that $X>n$, is also geometric with the same parameter. Formally,

$$
p_{X-n \mid X>n}(i)=p_{X}(i)
$$

Definition (Joint PMF) The joint PMF of random variables $X_{1}, X_{2}, \ldots, X_{n}$ is $p_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$.

- $\sum_{x_{1}} \cdots \sum_{x_{n}} p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=1$.
- $p_{X_{1}}\left(x_{1}\right)=\sum_{x_{2}} \cdots \sum_{x_{n}} p_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- $p_{X_{2}, \ldots, X_{n}}\left(x_{2}, \ldots, x_{n}\right)=\sum_{x_{1}} p_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Definition (Functions of multiple r.v.) If $Z=g\left(X_{1}, \ldots, X_{n}\right)$, where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then $p_{Z}(z)=\mathbb{P}\left(g\left(X_{1}, \ldots, X_{n}\right)=z\right)$.
Proposition (Expected value rule for multiple r.v.) Given $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$,
$\mathbb{E}\left[g\left(X_{1}, \ldots, X_{n}\right)\right]=\sum_{x_{1}, \ldots, x_{n}} g\left(x_{1}, \ldots, x_{n}\right) p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)$.
Properties (Linearity of expectations)

- $\mathbb{E}[a X+b]=a \mathbb{E}[X]+b$.
- $\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]$.

Conditioning on a random variable, independence

Definition (Conditional PMF given another random variable)
Given discrete random variables X, Y and y such that $p_{Y}(y)>0$ we define

$$
p_{X \mid Y}(x \mid y) \triangleq \frac{p_{X, Y}(x, y)}{p_{Y}(y)}
$$

Proposition (Multiplication rule) Given jointly discrete random variables X, Y, and whenever the conditional probabilities are defined,

$$
p_{X, Y}(x, y)=p_{X}(x) p_{Y \mid X}(y \mid x)=p_{Y}(y) p_{X \mid Y}(x \mid y)
$$

Definition (Conditional expectation) Given discrete random variables X, Y and y such that $p_{Y}(y)>0$ we define

$$
\mathbb{E}[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

Additionally we have

$$
\mathbb{E}[g(X) \mid Y=y]=\sum_{x} g(x) p_{X \mid Y}(x \mid y)
$$

Theorem (Total probability and expectation theorems) If $p_{Y}(y)>0$, then

$$
\begin{aligned}
& p_{X}(x)=\sum_{y} p_{Y}(y) p_{X \mid Y}(x \mid y) \\
& \mathbb{E}[X]=\sum_{y} p_{Y}(y) \mathbb{E}[X \mid Y=y]
\end{aligned}
$$

Definition (Independence of a random variable and an event) A discrete random variable X and an event A are independent if $\mathbb{P}(X=x$ and $A)=p_{X}(x) \mathbb{P}(A)$, for all x.
Definition (Independence of two random variables) Two discrete random variables X and Y are independent if $p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$ for all x, y.
Remark (Independence of a collection of random variables) A collection $X_{1}, X_{2}, \ldots, X_{n}$ of random variables are independent if

$$
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=p_{X_{1}}\left(x_{1}\right) \cdots p_{X_{n}}\left(x_{n}\right), \forall x_{1}, \ldots, x_{n}
$$

Remark (Independence and expectation) In general,
$\mathbb{E}[g(X, Y)] \neq g(\mathbb{E}[X], \mathbb{E}[Y])$. An exception is for linear functions: $\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]$.

Proposition (Expectation of product of independent r.v.) If X and Y are discrete independent random variables,

$$
\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]
$$

Remark If X and Y are independent,
$\mathbb{E}[g(X) h(Y)]=\mathbb{E}[g(X)] \mathbb{E}[h(Y)]$.
Proposition (Variance of sum of independent random variables) IF X and Y are discrete independent random variables,

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Continuous random variables

PDF, Expectation, Variance, $C D F$
Definition (Probability density function (PDF)) A probability density function of a r.v. X is a non-negative real valued function f_{X} that satisfies the following

- $\int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=1$.
- $\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) \mathrm{d} x$ for some random variable X. Definition (Continuous random variable) A random variable X is continuous if its probability law can be described by a PDF f_{X}. Remark Continuous random variables satisfy:
- For small $\delta>0, \mathbb{P}(a \leq X \leq a+\delta) \approx f_{X}(a) \delta$.
- $\mathbb{P}(X=a)=0, \forall a \in \mathbb{R}$.

Definition (Expectation of a continuous random variable) The expectation of a continuous random variable is

$$
\mathbb{E}[X] \triangleq \int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x
$$

assuming $\int_{-\infty}^{\infty}|x| f_{X}(x) \mathrm{d} x<\infty$.
Properties (Properties of expectation)

- If $X \geq 0$ then $\mathbb{E}[X] \geq 0$.
- If $a \leq X \leq b$ then $a \leq \mathbb{E}[X] \leq b$.
- $\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) \mathrm{d} x$.
- $\mathbb{E}[a X+b]=a \mathbb{E}[X]+b$.

Definition (Variance of a continuous random variable) Given a continuous random variable X with $\mu=\mathbb{E}[X]$, its variance is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f_{X}(x) \mathrm{d} x
$$

It has the same properties as the variance of a discrete random variable.
Example (Uniform continuous random variable) A Uniform continuous random variable X between a and b, with $a<b$, ($X \sim \operatorname{Uni}(a, b)$) has PDF

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a}, & \text { if } a<x<b \\ 0, & \text { otherwise }\end{cases}
$$

We have $\mathbb{E}[X]=\frac{a+b}{2}$ and $\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$.

Example (Exponential random variable) An Exponential random variable X with parameter $\lambda>0(X \sim \operatorname{Exp}(\lambda))$ has PDF

$$
f_{X}(x)= \begin{cases}\lambda \mathrm{e}^{-\lambda x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

We have $E[X]=\frac{1}{\lambda}$ and $\operatorname{Var}(X)=\frac{1}{\lambda^{2}}$.
Definition (Cumulative Distribution Function (CDF)) The CDF of a random variable X is $F_{X}(x)=\mathbb{P}(X \leq x)$.
In particular, for a continuous random variable, we have

$$
\begin{aligned}
F_{X}(x) & =\int_{-\infty}^{x} f_{X}(x) \mathrm{d} x \\
f_{X}(x) & =\frac{\mathrm{d} F_{X}(x)}{\mathrm{d} x}
\end{aligned}
$$

Properties (Properties of CDF)

- If $y \geq x$, then $F_{X}(y) \geq F_{X}(x)$.
- $\lim _{x \rightarrow-\infty} F_{X}(x)=0$.
- $\lim _{x \rightarrow \infty} F_{X}(x)=1$.

Definition (Normal/Gaussian random variable) A Normal random variable X with mean μ and variance $\sigma^{2}>0\left(X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)\right)$ has PDF

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}} .
$$

We have $E[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
Remark (Standard Normal) The standard Normal is $\mathcal{N}(0,1)$.
Proposition (Linearity of Gaussians) Given $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, and if $a \neq 0$, then $a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$.
Using this $Y=\frac{X-\mu}{\sigma}$ is a standard gaussian.
Conditioning on an event, and multiple continuous r.v.
Definition (Conditional PDF given an event) Given a continuous random variable X and event A with $P(A)>0$, we define the conditional PDF as the function that satisfies

$$
\mathbb{P}(X \in B \mid A)=\int_{B} f_{X \mid A}(x) \mathrm{d} x
$$

Definition (Conditional PDF given $X \in A$) Given a continuous random variable X and an $A \subset \mathbb{R}$, with $P(A)>0$:

$$
f_{X \mid X \in A}(x)= \begin{cases}\frac{1}{\mathrm{P}(A)} f_{X}(x), & x \in A, \\ 0, & x \notin A .\end{cases}
$$

Definition (Conditional expectation) Given a continuous random variable X and an event A, with $P(A)>0$:

$$
\mathbb{E}[X \mid A]=\int_{-\infty}^{\infty} f_{X \mid A}(x) \mathrm{d} x
$$

Definition (Memorylessness of the exponential random variable) When we condition an exponential random variable X on the event $X>t$ we have memorylessness, meaning that the "remaining time" $X-t$ given that $X>t$ is also geometric with the same parameter i.e.,

$$
\mathbb{P}(X-t>x \mid X>t)=\mathbb{P}(X>x)
$$

Theorem (Total probability and expectation theorems) Given a partition of the space into disjoint events $A_{1}, A_{2}, \ldots, A_{n}$ such that $\sum_{i} \mathbb{P}\left(A_{i}\right)=1$ we have the following:

$$
\begin{aligned}
F_{X}(x) & =\mathbb{P}\left(A_{1}\right) F_{X \mid A_{1}}(x)+\cdots+\mathbb{P}\left(A_{n}\right) F_{X \mid A_{n}}(x), \\
f_{X}(x) & =\mathbb{P}\left(A_{1}\right) f_{X \mid A_{1}}(x)+\cdots+\mathbb{P}\left(A_{n}\right) f_{X \mid A_{n}}(x), \\
\mathbb{E}[X] & =\mathbb{P}\left(A_{1}\right) \mathbb{E}\left[X \mid A_{1}\right]+\cdots+\mathbb{P}\left(A_{n}\right) \mathbb{E}\left[X \mid A_{n}\right] .
\end{aligned}
$$

Definition (Jointly continuous random variables) A pair
(collection) of random variables is jointly continuous if there exists a joint PDF $f_{X, Y}$ that describes them, that is, for every set $B \subset \mathbb{R}^{n}$

$$
\mathbb{P}((X, Y) \in B)=\iint_{B} f_{X, Y}(x, y) \mathrm{d} x \mathrm{~d} y
$$

Properties (Properties of joint PDFs)

- $f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) \mathrm{d} y$.
- $F_{X, Y}(x, y)=\mathbb{P}(X \leq x, Y \leq y)=\int_{-\infty}^{x}\left[\int_{-\infty}^{y} f_{X, Y}(u, v) \mathrm{d} v\right] \mathrm{d} u$.
- $f_{X, Y}(x)=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y}$.

Example (Uniform joint PDF on a set S) Let $S \subset \mathbb{R}^{2}$ with area $s>0$, then the random variable (X, Y) is uniform over S if it has PDF

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{s}, & (x, y) \in S \\ 0, & (x, y) \notin S\end{cases}
$$

Conditioning on a random variable, independence, Bayes' rule Definition (Conditional PDF given another random variable) Given jointly continuous random variables X, Y and a value y such that $f_{Y}(y)>0$, we define the conditional PDF as

$$
f_{X \mid Y}(x \mid y) \triangleq \frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

Additionally we define $\mathbb{P}(X \in A \mid Y=y) \int_{A} f_{X \mid Y}(x \mid y) \mathrm{d} x$ Proposition (Multiplication rule) Given jointly continuous random variables X, Y, whenever possible we have

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x)=f_{Y}(y) f_{X \mid Y}(x \mid y)
$$

Definition (Conditional expectation) Given jointly continuous random variables X, Y, and y such that $f_{Y}(y)>0$, we define the conditional expected value as

$$
\mathbb{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) \mathrm{d} x
$$

Additionally we have

$$
\mathbb{E}[g(X) \mid Y=y]=\int_{-\infty}^{\infty} g(x) f_{X \mid Y}(x \mid y) \mathrm{d} x .
$$

Theorem (Total probability and total expectation theorems)

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f_{Y}(y) f_{X \mid Y}(x \mid y) \mathrm{d} y \\
& \mathbb{E}[X]=\int_{-\infty}^{\infty} f_{Y}(y) \mathbb{E}[X \mid Y=y] \mathrm{d} y
\end{aligned}
$$

Definition (Independence) Jointly continuous random variables

 X, Y are independent if $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ for all x, y.Proposition (Expectation of product of independent r.v.) If X and Y are independent continuous random variables,

$\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$

Remark If X and Y are independent,
$\mathbb{E}[g(X) h(Y)]=\mathbb{E}[g(X)] \mathbb{E}[h(Y)]$.
Proposition (Variance of sum of independent random variables) If X and Y are independent continuous random variables,

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Proposition (Bayes' rule summary)

- For X, Y discrete: $p_{X \mid Y}(x \mid y)=\frac{p_{X}(x) p_{Y \mid X}(y \mid x)}{p_{Y}(y)}$.
- For X, Y continuous: $f_{X \mid Y}(x \mid y)=\frac{f_{X}(x) f_{Y \mid X}(y \mid x)}{f_{Y}(y)}$.
- For X discrete, Y continuous: $p_{X \mid Y}(x \mid y)=\frac{p_{X}(x) f_{Y \mid X}(y \mid x)}{f_{Y}(y)}$.
- For X continuous, Y discrete: $f_{X \mid Y}(x \mid y)=\frac{f_{X}(x) p_{Y \mid X}(y \mid x)}{p_{Y}(y)}$.

Derived distributions

Proposition (Discrete case) Given a discrete random variable X and a function g, the r.v. $Y=g(X)$ has PMF

$$
p_{Y}(y)=\sum_{x: g(x)=y} p_{X}(x) .
$$

Remark (Linear function of discrete random variable) If $g(x)=a x+b$, then $p_{Y}(y)=p_{X}\left(\frac{y-b}{a}\right)$.

Proposition (Linear function of continuous r.v.) Given a continuous random variable X and $Y=a X+b$, with $a \neq 0$, we have

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right) .
$$

Corollary (Linear function of normal r.v.) If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $Y=a X+b$, with $a \neq 0$, then $Y \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$.

Example (General function of a continuous r.v.) If X is a continuous random variable and g is any function, to obtain the pdf of $Y=g(X)$ we follow the two-step procedure:

1. Find the CDF of $Y: F_{Y}(y)=\mathbb{P}(Y \leq y)=\mathbb{P}(g(X) \leq y)$.
2. Differentiate the CDF of Y to obtain the PDF:

$$
f_{Y}(y)=\frac{\mathrm{d} F_{Y}(y)}{\mathrm{d} y}
$$

Proposition (General formula for monotonic g) Let X be a continuous random variable and g a function that is monotonic wherever $f_{X}(x)>0$. The PDF of $Y=g(X)$ is given by

$$
f_{Y}(y)=f_{X}(h(y))\left|\frac{\mathrm{d} h}{\mathrm{~d} y}(y)\right| .
$$

where $h=g^{-1}$ in the interval where g is monotonic.

Sums of independent r.v., covariance and correlation

Proposition (Discrete case) Let X, Y be discrete independent random variables and $Z=X+Y$, then the PMF of Z is

$$
p_{Z}(z)=\sum_{x} p_{X}(x) p_{Y}(z-x) .
$$

Proposition (Continuous case) Let X, Y be continuous independent random variables and $Z=X+Y$, then the PDF of Z is

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) \mathrm{d} x
$$

Proposition (Sum of independent normal r.v.) Let $X \sim \mathcal{N}\left(\mu_{x}, \sigma_{x}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{y}, \sigma_{y}^{2}\right)$ independent. Then $Z=X+Y \sim \mathcal{N}\left(\mu_{x}+\mu_{y}, \sigma_{x}^{2}+\sigma_{y}^{2}\right)$.
Definition (Covariance) We define the covariance of random variables X, Y as

$$
\operatorname{Cov}(X, Y) \triangleq \mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

Properties (Properties of covariance)

- If X, Y are independent, then $\operatorname{Cov}(X, Y)=0$.
- $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$.
- $\operatorname{Cov}(a X+b, Y)=a \operatorname{Cov}(X, Y)$.
- $\operatorname{Cov}(X, Y+Z)=\operatorname{Cov}(X, Y)+\operatorname{Cov}(X, Z)$.
- $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$.

Proposition (Variance of a sum of r.v.)

$$
\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\sum_{i} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right) .
$$

Definition (Correlation coefficient) We define the correlation coefficient of random variables X, Y, with $\sigma_{X}, \sigma_{Y}>0$, as

$$
\rho(X, Y) \triangleq \frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Properties (Properties of the correlation coefficient)

- $-1 \leq \rho \leq 1$.
- If X, Y are independent, then $\rho=0$.
- $|\rho|=1$ if and only if $X-\mathbb{E}[X]=c(Y-\mathbb{E}[Y])$.
- $\rho(a X+b, Y)=\operatorname{sign}(a) \rho(X, Y)$.

Conditional expectation and variance, sum of

 random number of r.v.Definition (Conditional expectation as a random variable) Given random variables X, Y the conditional expectation $\mathbb{E}[X \mid Y]$ is the random variable that takes the value $\mathbb{E}[X \mid Y=y]$ whenever $Y=y$. Theorem (Law of iterated expectations)

$$
\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]
$$

Definition (Conditional variance as a random variable) Given random variables X, Y the conditional variance $\operatorname{Var}(X \mid Y)$ is the random variable that takes the value $\operatorname{Var}(X \mid Y=y)$ whenever $Y=y$.
Theorem (Law of total variance)

$$
\operatorname{Var}(X)=\mathbb{E}[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(\mathbb{E}[X \mid Y])
$$

Proposition (Sum of a random number of independent r.v.) Let N be a nonnegative integer random variable. Let $X, X_{1}, X_{2}, \ldots, X_{N}$ be i.i.d. random variables. Let $Y=\sum_{i} X_{i}$. Then

$$
\mathbb{E}[Y]=\mathbb{E}[N] \mathbb{E}[X],
$$

$$
\operatorname{Var}(Y)=\mathbb{E}[N] \operatorname{Var}(X)+(\mathbb{E}[X])^{2} \operatorname{Var}(N)
$$

Convergence of Random variables

Inequalities, convergence, and the Weak Law of

Large Numbers

Theorem (Markov inequality) Given a random variable $X \geq 0$ and, for every $a>0$ we have

$$
\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}
$$

Theorem (Chebyshev inequality) Given a random variable X with $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$, for every $\epsilon>0$ we have

$$
\mathbb{P}(|X-\mu| \geq \epsilon) \leq \frac{\sigma^{2}}{\epsilon^{2}}
$$

Theorem (Weak Law of Large Number (WLLN)) Given a sequence of i.i.d. random variables $\left\{X_{1}, X_{2}, \ldots\right\}$ with $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, we define

$$
M_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

for every $\epsilon>0$ we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|M_{n}-\mu\right| \geq \epsilon\right)=0
$$

Definition (Convergence in probability) A sequence of random variables $\left\{Y_{i}\right\}$ converges in probability to the random variable Y if

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|Y_{i}-Y\right| \geq \epsilon\right)=0
$$

for every $\epsilon>0$.
Properties (Properties of convergence in probability) If $X_{n} \rightarrow a$ and $Y_{n} \rightarrow b$ in probability, then

- $X_{n}+Y_{n} \rightarrow a+b$.
- If g is a continuous function, then $g\left(X_{n}\right) \rightarrow g(a)$.
- $\mathbb{E}\left[X_{n}\right]$ does not always converge to a.

The Central Limit Theorem

Theorem (Central Limit Theorem (CLT)) Given a sequence of independent random variables $\left\{X_{1}, X_{2}, \ldots\right\}$ with $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, we define

$$
Z_{n}=\frac{1}{\sigma \sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)
$$

Then, for every z, we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(Z_{n} \leq z\right)=\mathbb{P}(Z \leq z)
$$

where $Z \sim \mathcal{N}(0,1)$.
Corollary (Normal approximation of a binomial) Let $X \sim \operatorname{Bin}(n, p)$ with n large. Then S_{n} can be approximated by $Z \sim \mathcal{N}(n p, n p(1-p))$.
Remark (De Moivre-Laplace $1 / 2$ approximation) Let $X \sim$ Bin, then $\mathbb{P}(X=i)=\mathbb{P}\left(i-\frac{1}{2} \leq X \leq i+\frac{1}{2}\right)$ and we can use the CLT to approximate the PMF of X.

Super VIP Cheatsheet: Machine Learning

Afshine Amidi and Shervine Amidi

Contents

1 Supervised Learning
 2

1.1 Introduction to Supervised Learning 2
1.2 Notations and general concepts 2
1.3 Linear models 2
1.3.1 Linear regression 2
1.3.2 Classification and logistic regression 3
1.3.3 Generalized Linear Models 3
1.4 Support Vector Machines 3
1.5 Generative Learning 4
1.5.1 Gaussian Discriminant Analysis 4
1.5.2 Naive Bayes 4
1.6 Tree-based and ensemble methods 4
1.7 Other non-parametric approaches 4
1.8 Learning Theory 5
2 Unsupervised Learning 6
2.1 Introduction to Unsupervised Learning 6
2.2 Clustering 6
2.2.1 Expectation-Maximization 6
2.2.2 k-means clustering 6
2.2.3 Hierarchical clustering 6
2.2.4 Clustering assessment metrics 6
2.3 Dimension reduction 7
2.3.1 Principal component analysis 7
2.3.2 Independent component analysis 7
3 Deep Learning 8
3.1 Neural Networks 8
3.2 Convolutional Neural Networks 8
3.3 Recurrent Neural Networks 8
3.4 Reinforcement Learning and Control 9

4 Reinforcement Learning and Control

October 6, 2018
4 Machine Learning Tips and Tricks10
4.1 Metrics 10
4.1.1 Classification 10
4.1.2 Regression 10
4.2 Model selection 11
4.3 Diagnostics 11
5 Refreshers 12
5.1 Probabilities and Statistics 12
5.1.1 Introduction to Probability and Combinatorics 12
5.1.2 Conditional Probability 12
5.1.3 Random Variables 13
5.1.4 Jointly Distributed Random Variables 13
5.1.5 Parameter estimation 14
5.2 Linear Algebra and Calculus 14
5.2.1 General notations 14
5.2.2 Matrix operations 15
5.2.3 Matrix properties 15
5.2.4 Matrix calculus 16

1 Supervised Learning

1.1 Introduction to Supervised Learning

Given a set of data points $\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ associated to a set of outcomes $\left\{y^{(1)}, \ldots, y^{(m)}\right\}$, we want to build a classifier that learns how to predict y from x.
\square Type of prediction - The different types of predictive models are summed up in the table below:

	Regression	Classifier
Outcome	Continuous	Class
Examples	Linear regression	Logistic regression, SVM, Naive Bayes

\square Type of model - The different models are summed up in the table below:

	Discriminative model	Generative model
Goal	Directly estimate $P(y \mid x)$	Estimate $P(x \mid y)$ to deduce $P(y \mid x)$
What's learned	Decision boundary	Probability distributions of the data
Illustration		
Examples	Regressions, SVMs	

1.2 Notations and general concepts

\square Hypothesis - The hypothesis is noted h_{θ} and is the model that we choose. For a given input data $x^{(i)}$, the model prediction output is $h_{\theta}\left(x^{(i)}\right)$

Loss function - A loss function is a function $L:(z, y) \in \mathbb{R} \times Y \longmapsto L(z, y) \in \mathbb{R}$ that takes as inputs the predicted value z corresponding to the real data value y and outputs how different they are. The common loss functions are summed up in the table below:

Least squared	Logistic	Hinge	Cross-entropy
$\frac{1}{2}(y-z)^{2}$	$\log (1+\exp (-y z))$	$\max (0,1-y z)$	$-[y \log (z)+(1-y) \log (1-z)]$
	$\xrightarrow[y y y]{c}$		

\square Cost function - The cost function J is commonly used to assess the performance of a model, and is defined with the loss function L as follows:

$$
J(\theta)=\sum_{i=1}^{m} L\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)
$$

\square Gradient descent - By noting $\alpha \in \mathbb{R}$ the learning rate, the update rule for gradient descent is expressed with the learning rate and the cost function J as follows

$$
\theta \longleftarrow \theta-\alpha \nabla J(\theta)
$$

Remark: Stochastic gradient descent (SGD) is updating the parameter based on each training example, and batch gradient descent is on a batch of training examples.
\square Likelihood - The likelihood of a model $L(\theta)$ given parameters θ is used to find the optimal parameters θ through maximizing the likelihood. In practice, we use the log-likelihood $\ell(\theta)=$ $\log (L(\theta))$ which is easier to optimize. We have:

$$
\theta^{\text {opt }}=\underset{\theta}{\arg \max } L(\theta)
$$

\square Newton's algorithm - The Newton's algorithm is a numerical method that finds θ such that $\ell^{\prime}(\theta)=0$. Its update rule is as follows:

$$
\theta \leftarrow \theta-\frac{\ell^{\prime}(\theta)}{\ell^{\prime \prime}(\theta)}
$$

Remark: the multidimensional generalization, also known as the Newton-Raphson method, has the following update rule:

$$
\theta \leftarrow \theta-\left(\nabla_{\theta}^{2} \ell(\theta)\right)^{-1} \nabla_{\theta} \ell(\theta)
$$

1.3 Linear models

1.3.1 Linear regression

We assume here that $y \mid x ; \theta \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$
\square Normal equations - By noting X the matrix design, the value of θ that minimizes the cost function is a closed-form solution such that:

$$
\theta=\left(X^{T} X\right)^{-1} X^{T} y
$$

\square LMS algorithm - By noting α the learning rate, the update rule of the Least Mean Squares (LMS) algorithm for a training set of m data points, which is also known as the Widrow-Hoff learning rule, is as follows:

$$
\forall j, \quad \theta_{j} \leftarrow \theta_{j}+\alpha \sum_{i=1}^{m}\left[y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right] x_{j}^{(i)}
$$

Remark: the update rule is a particular case of the gradient ascent.
\square LWR - Locally Weighted Regression, also known as LWR, is a variant of linear regression that weights each training example in its cost function by $w^{(i)}(x)$, which is defined with parameter $\tau \in \mathbb{R}$ as:

$$
w^{(i)}(x)=\exp \left(-\frac{\left(x^{(i)}-x\right)^{2}}{2 \tau^{2}}\right)
$$

1.3.2 Classification and logistic regression

\square Sigmoid function - The sigmoid function g, also known as the logistic function, is defined as follows

$$
\left.\forall z \in \mathbb{R}, \quad g(z)=\frac{1}{1+e^{-z}} \in\right] 0,1[
$$

\square Logistic regression - We assume here that $y \mid x ; \theta \sim \operatorname{Bernoulli}(\phi)$. We have the following form:

$$
\phi=p(y=1 \mid x ; \theta)=\frac{1}{1+\exp \left(-\theta^{T} x\right)}=g\left(\theta^{T} x\right)
$$

Remark: there is no closed form solution for the case of logistic regressions.
\square Softmax regression - A softmax regression, also called a multiclass logistic regression, is used to generalize logistic regression when there are more than 2 outcome classes. By convention, we set $\theta_{K}=0$, which makes the Bernoulli parameter ϕ_{i} of each class i equal to:

$$
\phi_{i}=\frac{\exp \left(\theta_{i}^{T} x\right)}{\sum_{j=1}^{K} \exp \left(\theta_{j}^{T} x\right)}
$$

1.3.3 Generalized Linear Models

\square Exponential family - A class of distributions is said to be in the exponential family if it can be written in terms of a natural parameter, also called the canonical parameter or link function, η, a sufficient statistic $T(y)$ and a log-partition function $a(\eta)$ as follows:

$$
p(y ; \eta)=b(y) \exp (\eta T(y)-a(\eta))
$$

Remark: we will often have $T(y)=y$. Also, $\exp (-a(\eta))$ can be seen as a normalization param eter that will make sure that the probabilities sum to one.
Here are the most common exponential distributions summed up in the following table:

Distribution	η	$T(y)$	$a(\eta)$	$b(y)$
Bernoulli	$\log \left(\frac{\phi}{1-\phi}\right)$	y	$\log (1+\exp (\eta))$	1
Gaussian	μ	y	$\frac{\eta^{2}}{2}$	$\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right)$
Poisson	$\log (\lambda)$	y	e^{η}	$\frac{1}{y!}$
Geometric	$\log (1-\phi)$	y	$\log \left(\frac{e^{\eta}}{1-e^{\eta}}\right)$	1

\square Assumptions of GLMs - Generalized Linear Models (GLM) aim at predicting a random variable y as a function fo $x \in \mathbb{R}^{n+1}$ and rely on the following 3 assumptions:
(1) $y \mid x ; \theta \sim \operatorname{ExpFamily}(\eta)$
(2) $h_{\theta}(x)=E[y \mid x ; \theta]$
(3) $\eta=\theta^{T} x$

Remark: ordinary least squares and logistic regression are special cases of generalized linear models.

1.4 Support Vector Machines

The goal of support vector machines is to find the line that maximizes the minimum distance to the line.
\square Optimal margin classifier - The optimal margin classifier h is such that:

$$
h(x)=\operatorname{sign}\left(w^{T} x-b\right)
$$

where $(w, b) \in \mathbb{R}^{n} \times \mathbb{R}$ is the solution of the following optimization problem:

$$
\min \frac{1}{2}\|w\|^{2} \quad \text { such that } \quad y^{(i)}\left(w^{T} x^{(i)}-b\right) \geqslant 1
$$

\square Hinge loss - The hinge loss is used in the setting of SVMs and is defined as follows:

$$
L(z, y)=[1-y z]_{+}=\max (0,1-y z)
$$

\square Kernel - Given a feature mapping ϕ, we define the kernel K to be defined as

$$
K(x, z)=\phi(x)^{T} \phi(z)
$$

In practice, the kernel K defined by $K(x, z)=\exp \left(-\frac{\|x-z\|^{2}}{2 \sigma^{2}}\right)$ is called the Gaussian kernel and is commonly used.

Non-linear separability \longrightarrow Use of a kernel mapping $\phi \longrightarrow$ Decision boundary in the original space
Remark: we say that we use the "kernel trick" to compute the cost function using the kernel because we actually don't need to know the explicit mapping ϕ, which is often very complicated. Instead, only the values $K(x, z)$ are needed
\square Lagrangian - We define the Lagrangian $\mathcal{L}(w, b)$ as follows:

$$
\mathcal{L}(w, b)=f(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w)
$$

Remark: the coefficients β_{i} are called the Lagrange multipliers.

1.5 Generative Learning

A generative model first tries to learn how the data is generated by estimating $P(x \mid y)$, which we can then use to estimate $P(y \mid x)$ by using Bayes' rule.

1.5.1 Gaussian Discriminant Analysis

\square Setting - The Gaussian Discriminant Analysis assumes that y and $x \mid y=0$ and $x \mid y=1$ are such that:

$$
y \sim \operatorname{Bernoulli}(\phi)
$$

$$
x \mid y=0 \sim \mathcal{N}\left(\mu_{0}, \Sigma\right) \quad \text { and } \quad x \mid y=1 \sim \mathcal{N}\left(\mu_{1}, \Sigma\right)
$$

\square Estimation - The following table sums up the estimates that we find when maximizing the likelihood:

$\widehat{\phi}$	$\widehat{\mu_{j}}(j=0,1)$	$\widehat{\Sigma}$
$\frac{1}{m} \sum_{i=1}^{m} 1_{\left\{y^{(i)}=1\right\}}$	$\frac{\sum_{i=1}^{m} 1_{\left\{y^{(i)}=j\right\}} x^{(i)}}{\sum_{i=1}^{m} 1_{\left\{y^{(i)}=j\right\}}}$	$\frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)}-\mu_{y^{(i)}}\right)\left(x^{(i)}-\mu_{y^{(i)}}\right)^{T}$

1.5.2 Naive Bayes

\square Assumption - The Naive Bayes model supposes that the features of each data point are all independent:

$$
P(x \mid y)=P\left(x_{1}, x_{2}, \ldots \mid y\right)=P\left(x_{1} \mid y\right) P\left(x_{2} \mid y\right) \ldots=\prod_{i=1}^{n} P\left(x_{i} \mid y\right)
$$

\square Solutions - Maximizing the log-likelihood gives the following solutions, with $k \in\{0,1\}$, $l \in \llbracket 1, L \rrbracket$

$$
P(y=k)=\frac{1}{m} \times \#\left\{j \mid y^{(j)}=k\right\} \quad \text { and }
$$

$$
P\left(x_{i}=l \mid y=k\right)=\frac{\#\left\{j \mid y^{(j)}=k \text { and } x_{i}^{(j)}=l\right\}}{\#\left\{j \mid y^{(j)}=k\right\}}
$$

Remark: Naive Bayes is widely used for text classification and spam detection.

1.6 Tree-based and ensemble methods

These methods can be used for both regression and classification problems.
\square CART - Classification and Regression Trees (CART), commonly known as decision trees, can be represented as binary trees. They have the advantage to be very interpretable

ح Random forest - It is a tree-based technique that uses a high number of decision trees built out of randomly selected sets of features. Contrary to the simple decision tree, it is highly uninterpretable but its generally good performance makes it a popular algorithm.
Remark: random forests are a type of ensemble methods.
I Boosting - The idea of boosting methods is to combine several weak learners to form a stronger one. The main ones are summed up in the table below:

Adaptive boosting	Gradient boosting
- High weights are put on errors to improve at the next boosting step - Known as Adaboost	- Weak learners trained on remaining errors

1.7 Other non-parametric approaches

I k-nearest neighbors - The k-nearest neighbors algorithm, commonly known as k-NN, is a non-parametric approach where the response of a data point is determined by the nature of its k neighbors from the training set. It can be used in both classification and regression settings.
Remark: The higher the parameter k, the higher the bias, and the lower the parameter k, the higher the variance.

1.8 Learning Theory

\square Union bound - Let A_{1}, \ldots, A_{k} be k events. We have:

$A_{1} \cup A_{2} \cup A_{3}$

A_{1}

A_{2}

A_{3}
\square Hoeffding inequality - Let $Z_{1}, . ., Z_{m}$ be m iid variables drawn from a Bernoulli distribution of parameter ϕ. Let $\widehat{\phi}$ be their sample mean and $\gamma>0$ fixed. We have:

$$
P(|\phi-\widehat{\phi}|>\gamma) \leqslant 2 \exp \left(-2 \gamma^{2} m\right)
$$

Remark: this inequality is also known as the Chernoff bound.
\square Training error - For a given classifier h, we define the training error $\widehat{\epsilon}(h)$, also known as the empirical risk or empirical error, to be as follows:

$$
\widehat{\epsilon}(h)=\frac{1}{m} \sum_{i=1}^{m} 1_{\left\{h\left(x^{(i)}\right) \neq y^{(i)}\right\}}
$$

\square Probably Approximately Correct (PAC) - PAC is a framework under which numerous results on learning theory were proved, and has the following set of assumptions:

- the training and testing sets follow the same distribution
- the training examples are drawn independently
\square Shattering - Given a set $S=\left\{x^{(1)}, \ldots, x^{(d)}\right\}$, and a set of classifiers \mathcal{H}, we say that \mathcal{H} shatters S if for any set of labels $\left\{y^{(1)}, \ldots, y^{(d)}\right\}$, we have:

$$
\exists h \in \mathcal{H}, \quad \forall i \in \llbracket 1, d \rrbracket, \quad h\left(x^{(i)}\right)=y^{(i)}
$$

\square Upper bound theorem - Let \mathcal{H} be a finite hypothesis class such that $|\mathcal{H}|=k$ and let δ and the sample size m be fixed. Then, with probability of at least $1-\delta$, we have:

$$
\epsilon(\widehat{h}) \leqslant\left(\min _{h \in \mathcal{H}} \epsilon(h)\right)+2 \sqrt{\frac{1}{2 m} \log \left(\frac{2 k}{\delta}\right)}
$$

$\square \mathrm{VC}$ dimension - The Vapnik-Chervonenkis (VC) dimension of a given infinite hypothesis class \mathcal{H}, noted $\operatorname{VC}(\mathcal{H})$ is the size of the largest set that is shattered by \mathcal{H}.
Remark: the $V C$ dimension of $\mathcal{H}=\{$ set of linear classifiers in 2 dimensions $\}$ is 3.

\square Theorem (Vapnik) - Let \mathcal{H} be given, with $\mathrm{VC}(\mathcal{H})=d$ and m the number of training examples. With probability at least $1-\delta$, we have:

$$
\epsilon(\widehat{h}) \leqslant\left(\min _{h \in \mathcal{H}} \epsilon(h)\right)+O\left(\sqrt{\frac{d}{m} \log \left(\frac{m}{d}\right)+\frac{1}{m} \log \left(\frac{1}{\delta}\right)}\right)
$$

2 Unsupervised Learning

2.1 Introduction to Unsupervised Learning

\square Motivation - The goal of unsupervised learning is to find hidden patterns in unlabeled data $\left\{x^{(1)}, \ldots, x^{(m)}\right\}$.
\square Jensen's inequality - Let f be a convex function and X a random variable. We have the following inequality:

$$
E[f(X)] \geqslant f(E[X])
$$

2.2 Clustering

2.2.1 Expectation-Maximization

\square Latent variables - Latent variables are hidden/unobserved variables that make estimation problems difficult, and are often denoted z. Here are the most common settings where there are latent variables:

Setting	Latent variable z	$x \mid z$	Comments
Mixture of k Gaussians	Multinomial (ϕ)	$\mathcal{N}\left(\mu_{j}, \Sigma_{j}\right)$	$\mu_{j} \in \mathbb{R}^{n}, \phi \in \mathbb{R}^{k}$
Factor analysis	$\mathcal{N}(0, I)$	$\mathcal{N}(\mu+\Lambda z, \psi)$	$\mu_{j} \in \mathbb{R}^{n}$

ᄀ Algorithm - The Expectation-Maximization (EM) algorithm gives an efficient method at estimating the parameter θ through maximum likelihood estimation by repeatedly constructing a lower-bound on the likelihood (E-step) and optimizing that lower bound (M-step) as follows:

- E-step: Evaluate the posterior probability $Q_{i}\left(z^{(i)}\right)$ that each data point $x^{(i)}$ came from a particular cluster $z^{(i)}$ as follows:

$$
Q_{i}\left(z^{(i)}\right)=P\left(z^{(i)} \mid x^{(i)} ; \theta\right)
$$

- M-step: Use the posterior probabilities $Q_{i}\left(z^{(i)}\right)$ as cluster specific weights on data points $\overline{x^{(i)}}$ to separately re-estimate each cluster model as follows:

$$
\theta_{i}=\underset{\theta}{\operatorname{argmax}} \sum_{i} \int_{z^{(i)}} Q_{i}\left(z^{(i)}\right) \log \left(\frac{P\left(x^{(i)}, z^{(i)} ; \theta\right)}{Q_{i}\left(z^{(i)}\right)}\right) d z^{(i)}
$$

2.2.2 k-means clustering

We note $c^{(i)}$ the cluster of data point i and μ_{j} the center of cluster j
\square Algorithm - After randomly initializing the cluster centroids $\mu_{1}, \mu_{2}, \ldots, \mu_{k} \in \mathbb{R}^{n}$, the k-means algorithm repeats the following step until convergence

\square Distortion function - In order to see if the algorithm converges, we look at the distortion function defined as follows:

$$
J(c, \mu)=\sum_{i=1}^{m}\left\|x^{(i)}-\mu_{c^{(i)}}\right\|^{2}
$$

2.2.3 Hierarchical clustering

Algorithm - It is a clustering algorithm with an agglomerative hierarchical approach that build nested clusters in a successive manner

Types - There are different sorts of hierarchical clustering algorithms that aims at optimizing different objective functions, which is summed up in the table below:

Ward linkage	Average linkage	Complete linkage
Minimize within cluster distance	Minimize average distance between cluster pairs	Minimize maximum distance of between cluster pairs

2.2.4 Clustering assessment metrics

In an unsupervised learning setting, it is often hard to assess the performance of a model since we don't have the ground truth labels as was the case in the supervised learning setting.
\square Silhouette coefficient - By noting a and b the mean distance between a sample and all other points in the same class, and between a sample and all other points in the next nearest cluster, the silhouette coefficient s for a single sample is defined as follows:

$$
s=\frac{b-a}{\max (a, b)}
$$

\square Calinski-Harabaz index - By noting k the number of clusters, B_{k} and W_{k} the between and within-clustering dispersion matrices respectively defined as

$$
B_{k}=\sum_{j=1}^{k} n_{c^{(i)}}\left(\mu_{c^{(i)}}-\mu\right)\left(\mu_{c^{(i)}}-\mu\right)^{T}, \quad W_{k}=\sum_{i=1}^{m}\left(x^{(i)}-\mu_{c^{(i)}}\right)\left(x^{(i)}-\mu_{c^{(i)}}\right)^{T}
$$

the Calinski-Harabaz index $s(k)$ indicates how well a clustering model defines its clusters, such that the higher the score, the more dense and well separated the clusters are. It is defined as follows:

$$
s(k)=\frac{\operatorname{Tr}\left(B_{k}\right)}{\operatorname{Tr}\left(W_{k}\right)} \times \frac{N-k}{k-1}
$$

2.3 Dimension reduction

2.3.1 Principal component analysis

It is a dimension reduction technique that finds the variance maximizing directions onto which to project the data.
\square Eigenvalue, eigenvector - Given a matrix $A \in \mathbb{R}^{n \times n}, \lambda$ is said to be an eigenvalue of A if there exists a vector $z \in \mathbb{R}^{n} \backslash\{0\}$, called eigenvector, such that we have:

$A z=\lambda z$

\square Spectral theorem - Let $A \in \mathbb{R}^{n \times n}$. If A is symmetric, then A is diagonalizable by a real orthogonal matrix $U \in \mathbb{R}^{n \times n}$. By noting $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, we have:

$$
\exists \Lambda \text { diagonal, } \quad A=U \Lambda U^{T}
$$

Remark: the eigenvector associated with the largest eigenvalue is called principal eigenvector of matrix A.
\square Algorithm - The Principal Component Analysis (PCA) procedure is a dimension reduction technique that projects the data on k dimensions by maximizing the variance of the data as follows:

- Step 1: Normalize the data to have a mean of 0 and standard deviation of 1.

$$
x_{j}^{(i)} \leftarrow \frac{x_{j}^{(i)}-\mu_{j}}{\sigma_{j}} \text { where } \mu_{j}=\frac{1}{m} \sum_{i=1}^{m} x_{j}^{(i)} \text { and } \sigma_{j}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(x_{j}^{(i)}-\mu_{j}\right)^{2}
$$

- Step 2: Compute $\Sigma=\frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)^{T}} \in \mathbb{R}^{n \times n}$, which is symmetric with real eigenvalues.
- Step 3: Compute $u_{1}, \ldots, u_{k} \in \mathbb{R}^{n}$ the k orthogonal principal eigenvectors of Σ, i.e. the orthogonal eigenvectors of the k largest eigenvalues.
- Step 4: Project the data on $\operatorname{span}_{\mathbb{R}}\left(u_{1}, \ldots, u_{k}\right)$. This procedure maximizes the variance among all k-dimensional spaces.

Data in feature space

Find principal components
\rightarrow Data in principal components space

2.3.2 Independent component analysis

It is a technique meant to find the underlying generating sources.
\square Assumptions - We assume that our data x has been generated by the n-dimensional source vector $s=\left(s_{1}, \ldots, s_{n}\right)$, where s_{i} are independent random variables, via a mixing and non-singular matrix A as follows:

$$
x=A s
$$

The goal is to find the unmixing matrix $W=A^{-1}$ by an update rule.
\square Bell and Sejnowski ICA algorithm - This algorithm finds the unmixing matrix W by following the steps below:

- Write the probability of $x=A s=W^{-1} s$ as:

$$
p(x)=\prod_{i=1}^{n} p_{s}\left(w_{i}^{T} x\right) \cdot|W|
$$

- Write the \log likelihood given our training data $\left\{x^{(i)}, i \in \llbracket 1, m \rrbracket\right\}$ and by noting g the sigmoid function as:

$$
l(W)=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} \log \left(g^{\prime}\left(w_{j}^{T} x^{(i)}\right)\right)+\log |W|\right)
$$

Therefore, the stochastic gradient ascent learning rule is such that for each training example $x^{(i)}$, we update W as follows:

$$
W \longleftarrow W+\alpha\left(\left(\begin{array}{c}
1-2 g\left(w_{1}^{T} x^{(i)}\right) \\
1-2 g\left(w_{2}^{T} x^{(i)}\right) \\
\vdots \\
1-2 g\left(w_{n}^{T} x^{(i)}\right)
\end{array}\right) x^{(i)^{T}}+\left(W^{T}\right)^{-1}\right)
$$

3 Deep Learning

3.1 Neural Networks

Neural networks are a class of models that are built with layers. Commonly used types of neural networks include convolutional and recurrent neural networks.
\square Architecture - The vocabulary around neural networks architectures is described in the figure below:

Input layer
Hidden layer 1

Hidden layer k

By noting i the $i^{\text {th }}$ layer of the network and j the $j^{\text {th }}$ hidden unit of the layer, we have:

$$
z_{j}^{[i]}=w_{j}^{[i]}{ }^{T} x+b_{j}^{[i]}
$$

where we note w, b, z the weight, bias and output respectively.
\square Activation function - Activation functions are used at the end of a hidden unit to introduce non-linear complexities to the model. Here are the most common ones:

Sigmoid	Tanh	ReLU	Leaky ReLU
$g(z)=\frac{1}{1+e^{-z}}$	$g(z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}$	$g(z)=\max (0, z)$	$\begin{gathered} g(z)=\max (\epsilon z, z) \\ \text { with } \epsilon \ll 1 \end{gathered}$

\square Cross-entropy loss - In the context of neural networks, the cross-entropy loss $L(z, y)$ is commonly used and is defined as follows:

$$
L(z, y)=-[y \log (z)+(1-y) \log (1-z)]
$$

\square Learning rate - The learning rate, often noted η, indicates at which pace the weights get updated. This can be fixed or adaptively changed. The current most popular method is called Adam, which is a method that adapts the learning rate.
\square Backpropagation - Backpropagation is a method to update the weights in the neural network by taking into account the actual output and the desired output. The derivative with respect to weight w is computed using chain rule and is of the following form:

$$
\frac{\partial L(z, y)}{\partial w}=\frac{\partial L(z, y)}{\partial a} \times \frac{\partial a}{\partial z} \times \frac{\partial z}{\partial w}
$$

As a result, the weight is updated as follows:

$$
w \longleftarrow w-\eta \frac{\partial L(z, y)}{\partial w}
$$

\square Updating weights - In a neural network, weights are updated as follows:

- Step 1: Take a batch of training data.
- Step 2: Perform forward propagation to obtain the corresponding loss.
- Step 3: Backpropagate the loss to get the gradients.
- Step 4: Use the gradients to update the weights of the network.
\square Dropout - Dropout is a technique meant at preventing overfitting the training data by dropping out units in a neural network. In practice, neurons are either dropped with probability p or kept with probability $1-p$.

3.2 Convolutional Neural Networks

\square Convolutional layer requirement - By noting W the input volume size, F the size of the convolutional layer neurons, P the amount of zero padding, then the number of neurons N that fit in a given volume is such that:

$$
N=\frac{W-F+2 P}{S}+1
$$

\square Batch normalization - It is a step of hyperparameter γ, β that normalizes the batch $\left\{x_{i}\right\}$. By noting μ_{B}, σ_{B}^{2} the mean and variance of that we want to correct to the batch, it is done as follows:

$$
x_{i} \longleftarrow \gamma \frac{x_{i}-\mu_{B}}{\sqrt{\sigma_{B}^{2}+\epsilon}}+\beta
$$

It is usually done after a fully connected/convolutional layer and before a non-linearity layer and aims at allowing higher learning rates and reducing the strong dependence on initialization.

3.3 Recurrent Neural Networks

\square Types of gates - Here are the different types of gates that we encounter in a typical recurrent neural network:

Input gate	Forget gate	Output gate	Gate
Write to cell or not?	Erase a cell or not?	Reveal a cell or not?	How much writing?

\square LSTM - A long short-term memory (LSTM) network is a type of RNN model that avoids the vanishing gradient problem by adding 'forget' gates.

3.4 Reinforcement Learning and Control

The goal of reinforcement learning is for an agent to learn how to evolve in an environment.
\square Markov decision processes - A Markov decision process (MDP) is a 5-tuple ($S, A,\left\{P_{s a}\right\}, \gamma, R$) where:

- \mathcal{S} is the set of states
- \mathcal{A} is the set of actions
- $\left\{P_{s a}\right\}$ are the state transition probabilities for $s \in \mathcal{S}$ and $a \in \mathcal{A}$
- $\gamma \in[0,1[$ is the discount factor
- $R: \mathcal{S} \times \mathcal{A} \longrightarrow \mathbb{R}$ or $R: \mathcal{S} \longrightarrow \mathbb{R}$ is the reward function that the algorithm wants to maximize
\square Policy - A policy π is a function $\pi: \mathcal{S} \longrightarrow \mathcal{A}$ that maps states to actions.
Remark: we say that we execute a given policy π if given a state s we take the action $a=\pi(s)$
\square Value function - For a given policy π and a given state s, we define the value function V^{π} as follows:

$$
V^{\pi}(s)=E\left[R\left(s_{0}\right)+\gamma R\left(s_{1}\right)+\gamma^{2} R\left(s_{2}\right)+\ldots \mid s_{0}=s, \pi\right]
$$

\square Bellman equation - The optimal Bellman equations characterizes the value function $V^{\pi^{*}}$ of the optimal policy π^{*}

$$
V^{\pi^{*}}(s)=R(s)+\max _{a \in \mathcal{A}} \gamma \sum_{s^{\prime} \in S} P_{s a}\left(s^{\prime}\right) V^{\pi^{*}}\left(s^{\prime}\right)
$$

Remark: we note that the optimal policy π^{*} for a given state s is such that:

$$
\pi^{*}(s)=\underset{a \in \mathcal{A}}{\operatorname{argmax}} \sum_{s^{\prime} \in \mathcal{S}} P_{s a}\left(s^{\prime}\right) V^{*}\left(s^{\prime}\right)
$$

\square Value iteration algorithm - The value iteration algorithm is in two steps:

- We initialize the value:

$$
V_{0}(s)=0
$$

- We iterate the value based on the values before:

$$
V_{i+1}(s)=R(s)+\max _{a \in \mathcal{A}}\left[\sum_{s^{\prime} \in \mathcal{S}} \gamma P_{s a}\left(s^{\prime}\right) V_{i}\left(s^{\prime}\right)\right]
$$

\square Maximum likelihood estimate - The maximum likelihood estimates for the state transition probabilities are as follows:

$$
P_{s a}\left(s^{\prime}\right)=\frac{\text { \#times took action } a \text { in state } s \text { and got to } s^{\prime}}{\# \text { times took action } a \text { in state } s}
$$

\square Q-learning - Q-learning is a model-free estimation of Q, which is done as follows:

$$
Q(s, a) \leftarrow Q(s, a)+\alpha\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right]
$$

4 Machine Learning Tips and Tricks

4.1 Metrics

Given a set of data points $\left\{x^{(1)}, \ldots, x^{(m)}\right\}$, where each $x^{(i)}$ has n features, associated to a set of outcomes $\left\{y^{(1)}, \ldots, y^{(m)}\right\}$, we want to assess a given classifier that learns how to predict y from out
x.

4.1.1 Classification

In a context of a binary classification, here are the main metrics that are important to track to assess the performance of the model
\square Confusion matrix - The confusion matrix is used to have a more complete picture when assessing the performance of a model. It is defined as follows:

\square Main metrics - The following metrics are commonly used to assess the performance of classification models:

Metric	Formula	Interpretation
Accuracy	$\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{TN}+\mathrm{FP}+\mathrm{FN}}$	Overall performance of model
Precision	$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}$	How accurate the positive predictions are
Recall Sensitivity	$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}$	Coverage of actual positive sample
Specificity	$\frac{\mathrm{TN}}{\mathrm{TN}+\mathrm{FP}}$	Coverage of actual negative sample
F1 score	$\frac{2 \mathrm{TP}}{2 \mathrm{TP}+\mathrm{FP}+\mathrm{FN}}$	Hybrid metric useful for unbalanced classes

$\square \mathbf{R O C}$ - The receiver operating curve, also noted ROC, is the plot of TPR versus FPR by varying the threshold. These metrics are are summed up in the table below:

Metric	Formula	Equivalent
True Positive Rate TPR	$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}$	Recall, sensitivity
False Positive Rate FPR	$\frac{\mathrm{FP}}{\mathrm{TN}+\mathrm{FP}}$	1-specificity

\square AUC - The area under the receiving operating curve, also noted AUC or AUROC, is the area below the ROC as shown in the following figure:

4.1.2 Regression

\square Basic metrics - Given a regression model f, the following metrics are commonly used to assess the performance of the model:

Total sum of squares	Explained sum of squares	Residual sum of squares
$\mathrm{SS}_{\mathrm{tot}}=\sum_{i=1}^{m}\left(y_{i}-\bar{y}\right)^{2}$	$\mathrm{SS}_{\mathrm{reg}}=\sum_{i=1}^{m}\left(f\left(x_{i}\right)-\bar{y}\right)^{2}$	$\mathrm{SS}_{\mathrm{res}}=\sum_{i=1}^{m}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$

\square Coefficient of determination - The coefficient of determination, often noted R^{2} or r^{2} provides a measure of how well the observed outcomes are replicated by the model and is defined as follows:

$$
R^{2}=1-\frac{\mathrm{SS}_{\mathrm{res}}}{\mathrm{SS}_{\mathrm{tot}}}
$$

I Main metrics - The following metrics are commonly used to assess the performance of regression models, by taking into account the number of variables n that they take into consideration

Mallow's Cp	AIC	BIC	Adjusted R^{2}
$\frac{\mathrm{SS}_{\mathrm{res}}+2(n+1) \widehat{\sigma}^{2}}{m}$	$2[(n+2)-\log (L)]$	$\log (m)(n+2)-2 \log (L)$	$1-\frac{\left(1-R^{2}\right)(m-1)}{m-n-1}$

where L is the likelihood and $\widehat{\sigma}^{2}$ is an estimate of the variance associated with each response.

4.2 Model selection

\square Vocabulary - When selecting a model, we distinguish 3 different parts of the data that we have as follows:

Training set	Validation set	Testing set
- Model is trained	- Model is assessed	- Model gives predictions
- Usually 80% of the dataset	- Usually 20% of the dataset	- Unseen data
	- Also called hold-out or development set	

Once the model has been chosen, it is trained on the entire dataset and tested on the unseen test set. These are represented in the figure below:

\square Cross-validation - Cross-validation, also noted CV, is a method that is used to select a model that does not rely too much on the initial training set. The different types are summed up in the table below:

k-fold	Leave- p-out
- Training on $k-1$ folds and	- Training on $n-p$ observations and
assessment on the remaining one	assessment on the p remaining ones
- Generally $k=5$ or 10	- Case $p=1$ is called leave-one-out

The most commonly used method is called k-fold cross-validation and splits the training data into k folds to validate the model on one fold while training the model on the $k-1$ other folds all of this k times. The error is then averaged over the k folds and is named cross-validation ror
Fold
\square Regularization - The regularization procedure aims at avoiding the model to overfit the data and thus deals with high variance issues. The following table sums up the different types data and thus deals with high variance issue

LASSO	Ridge	Elastic Net
- Shrinks coefficients to 0 - Good for variable selection	Makes coefficients smaller	Tradeoff between variable selection and small coefficients

\square Model selection - Train model on training set, then evaluate on the development set, then pick best performance model on the development set, and retrain all of that model on the whole training set.

4.3 Diagnostics

\square Bias - The bias of a model is the difference between the expected prediction and the correct model that we try to predict for given data points.
\square Variance - The variance of a model is the variability of the model prediction for given data points.
\square Bias/variance tradeoff - The simpler the model, the higher the bias, and the more complex the model, the higher the variance

	Underfitting	Just right	Overfitting
Symptoms	- High training error - Training error close to test error - High bias	- Training error slightly lower than test error	- Low training error - Training error much lower than test error - High variance
Regression			

Classification	$\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 00 \\ 0000 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$		
Deep learning			
Remedies	- Complexify model - Add more features - Train longer		- Regularize - Get more data

\square Error analysis - Error analysis is analyzing the root cause of the difference in performance between the current and the perfect models.
\square Ablative analysis - Ablative analysis is analyzing the root cause of the difference in performance between the current and the baseline models.

5 Refreshers

5.1 Probabilities and Statistics

5.1.1 Introduction to Probability and Combinatorics

\square Sample space - The set of all possible outcomes of an experiment is known as the sample space of the experiment and is denoted by S.
\square Event - Any subset E of the sample space is known as an event. That is, an event is a set consisting of possible outcomes of the experiment. If the outcome of the experiment is contained in E, then we say that E has occurred.
\square Axioms of probability - For each event E, we denote $P(E)$ as the probability of event E occuring. By noting E_{1}, \ldots, E_{n} mutually exclusive events, we have the 3 following axioms:
(1) $0 \leqslant P(E) \leqslant 1$
(2) $P(S)=1$
(3) $P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)$
\square Permutation - A permutation is an arrangement of r objects from a pool of n objects, in a given order. The number of such arrangements is given by $P(n, r)$, defined as:

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

\square Combination - A combination is an arrangement of r objects from a pool of n objects, where the order does not matter. The number of such arrangements is given by $C(n, r)$, defined as:

$$
C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{r!(n-r)!}
$$

Remark: we note that for $0 \leqslant r \leqslant n$, we have $P(n, r) \geqslant C(n, r)$.

5.1.2 Conditional Probability

\square Bayes' rule - For events A and B such that $P(B)>0$, we have:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Remark: we have $P(A \cap B)=P(A) P(B \mid A)=P(A \mid B) P(B)$.
\square Partition - Let $\left\{A_{i}, i \in \llbracket 1, n \rrbracket\right\}$ be such that for all $i, A_{i} \neq \varnothing$. We say that $\left\{A_{i}\right\}$ is a partition if we have:

$$
\forall i \neq j, A_{i} \cap A_{j}=\emptyset \quad \text { and } \quad \bigcup_{i=1}^{n} A_{i}=S
$$

Remark: for any event B in the sample space, we have $P(B)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)$.
\square Extended form of Bayes' rule - Let $\left\{A_{i}, i \in \llbracket 1, n \rrbracket\right\}$ be a partition of the sample space We have:

$$
P\left(A_{k} \mid B\right)=\frac{P\left(B \mid A_{k}\right) P\left(A_{k}\right)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}
$$

\square Independence - Two events A and B are independent if and only if we have:

$$
P(A \cap B)=P(A) P(B)
$$

5.1.3 Random Variables

\square Random variable - A random variable, often noted X, is a function that maps every elemen in a sample space to a real line
\square Cumulative distribution function (CDF) - The cumulative distribution function F which is monotonically non-decreasing and is such that $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow+\infty} F(x)=1$, is defined as:

$$
F(x)=P(X \leqslant x)
$$

Remark: we have $P(a<X \leqslant B)=F(b)-F(a)$.
\square Probability density function (PDF) - The probability density function f is the probability that X takes on values between two adjacent realizations of the random variable
\square Relationships involving the PDF and CDF - Here are the important properties to know in the discrete (D) and the continuous (C) cases.

Case	CDF F	PDF f	Properties of PDF
(D)	$F(x)=\sum_{x_{i} \leqslant x} P\left(X=x_{i}\right)$	$f\left(x_{j}\right)=P\left(X=x_{j}\right)$	$0 \leqslant f\left(x_{j}\right) \leqslant 1$ and $\sum_{j} f\left(x_{j}\right)=1$
(C)	$F(x)=\int_{-\infty}^{x} f(y) d y$	$f(x)=\frac{d F}{d x}$	$f(x) \geqslant 0$ and $\int_{-\infty}^{+\infty} f(x) d x=1$

\square Variance - The variance of a random variable, often noted $\operatorname{Var}(X)$ or σ^{2}, is a measure of the spread of its distribution function. It is determined as follows:

$$
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2}
$$

\square Standard deviation - The standard deviation of a random variable, often noted σ, is a measure of the spread of its distribution function which is compatible with the units of the actual random variable. It is determined as follows.

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

\square Expectation and Moments of the Distribution - Here are the expressions of the expected value $E[X]$, generalized expected value $E[g(X)], k^{t h}$ moment $E\left[X^{k}\right]$ and characteristic function $\psi(\omega)$ for the discrete and continuous cases

Case	$E[X]$	$E[g(X)]$	$E\left[X^{k}\right]$	$\psi(\omega)$
(D)	$\sum_{i=1}^{n} x_{i} f\left(x_{i}\right)$	$\sum_{i=1}^{n} g\left(x_{i}\right) f\left(x_{i}\right)$	$\sum_{i=1}^{n} x_{i}^{k} f\left(x_{i}\right)$	$\sum_{i=1}^{n} f\left(x_{i}\right) e^{i \omega x_{i}}$
(C)	$\int_{-\infty}^{+\infty} x f(x) d x$	$\int_{-\infty}^{+\infty} g(x) f(x) d x$	$\int_{-\infty}^{+\infty} x^{k} f(x) d x$	$\int_{-\infty}^{+\infty} f(x) e^{i \omega x} d x$

Remark: we have $e^{i \omega x}=\cos (\omega x)+i \sin (\omega x)$
\square Revisiting the $k^{t h}$ moment - The $k^{t h}$ moment can also be computed with the characteristic function as follows

$$
E\left[X^{k}\right]=\frac{1}{i^{k}}\left[\frac{\partial^{k} \psi}{\partial \omega^{k}}\right]_{\omega=0}
$$

\square Transformation of random variables - Let the variables X and Y be linked by some function. By noting f_{X} and f_{Y} the distribution function of X and Y respectively, we have:

$$
f_{Y}(y)=f_{X}(x)\left|\frac{d x}{d y}\right|
$$

\square Leibniz integral rule - Let g be a function of x and potentially c, and a, b boundaries that may depend on c. We have:

$$
\frac{\partial}{\partial c}\left(\int_{a}^{b} g(x) d x\right)=\frac{\partial b}{\partial c} \cdot g(b)-\frac{\partial a}{\partial c} \cdot g(a)+\int_{a}^{b} \frac{\partial g}{\partial c}(x) d x
$$

\square Chebyshev's inequality - Let X be a random variable with expected value μ and standard deviation σ. For $k, \sigma>0$, we have the following inequality:

$$
P(|X-\mu| \geqslant k \sigma) \leqslant \frac{1}{k^{2}}
$$

5.1.4 Jointly Distributed Random Variables

\square Conditional density - The conditional density of X with respect to Y, often noted $f_{X \mid Y}$ is defined as follows:

$$
f_{X \mid Y}(x)=\frac{f_{X Y}(x, y)}{f_{Y}(y)}
$$

\square Independence - Two random variables X and Y are said to be independent if we have:

$$
f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

\square Marginal density and cumulative distribution - From the joint density probability function $f_{X Y}$, we have:

Case	Marginal density	Cumulative function
(D)	$f_{X}\left(x_{i}\right)=\sum_{j} f_{X Y}\left(x_{i}, y_{j}\right)$	$F_{X Y}(x, y)=\sum_{x_{i} \leqslant x} \sum_{y_{j} \leqslant y} f_{X Y}\left(x_{i}, y_{j}\right)$
(C)	$f_{X}(x)=\int_{-\infty}^{+\infty} f_{X Y}(x, y) d y$	$F_{X Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X Y}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}$

\square Distribution of a sum of independent random variables - Let $Y=X_{1}+\ldots+X_{n}$ with X_{1}, \ldots, X_{n} independent. We have:

$$
\psi_{Y}(\omega)=\prod_{k=1}^{n} \psi_{X_{k}}(\omega)
$$

\square Covariance - We define the covariance of two random variables X and Y, that we note $\sigma_{X Y}^{2}$ or more commonly $\operatorname{Cov}(X, Y)$, as follows:

$$
\operatorname{Cov}(X, Y) \triangleq \sigma_{X Y}^{2}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E[X Y]-\mu_{X} \mu_{Y}
$$

\square Correlation - By noting σ_{X}, σ_{Y} the standard deviations of X and Y, we define the correlation between the random variables X and Y, noted $\rho_{X Y}$, as follows:

$$
\rho_{X Y}=\frac{\sigma_{X Y}^{2}}{\sigma_{X} \sigma_{Y}}
$$

Remarks: For any X, Y, we have $\rho_{X Y} \in[-1,1]$. If X and Y are independent, then $\rho_{X Y}=0$.
Main distributions - Here are the main distributions to have in mind:

Type	Distribution	PDF	$\psi(\omega)$	$E[X]$	$\operatorname{Var}(X)$
(D)	$\begin{gathered} X \sim \mathcal{B}(n, p) \\ \text { Binomial } \end{gathered}$	$\begin{aligned} & P(X=x)=\binom{n}{x} p^{x} q^{n-x} \\ & x \in \llbracket 0, n \rrbracket \end{aligned}$	$\left(p e^{i \omega}+q\right)^{n}$	$n p$	$n p q$
	$\begin{gathered} X \sim \operatorname{Po}(\mu) \\ \text { Poisson } \end{gathered}$	$\begin{aligned} & P(X=x)=\frac{\mu^{x}}{x!} e^{-\mu} \\ & x \in \mathbb{N} \end{aligned}$	$e^{\mu\left(e^{i \omega}-1\right)}$	μ	μ
(C)	$X \sim \mathcal{U}(a, b)$ Uniform	$\begin{aligned} & f(x)=\frac{1}{b-a} \\ & x \in[a, b] \end{aligned}$	$\frac{e^{i \omega b}-e^{i \omega a}}{(b-a) i \omega}$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
	$X \sim \mathcal{N}(\mu, \sigma)$ Gaussian	$\begin{aligned} & f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \\ & x \in \mathbb{R} \end{aligned}$	$e^{i \omega \mu-\frac{1}{2} \omega^{2} \sigma^{2}}$	μ	σ^{2}
	$\begin{aligned} & X \sim \operatorname{Exp}(\lambda) \\ & \text { Exponential } \end{aligned}$	$\begin{aligned} & f(x)=\lambda e^{-\lambda x} \\ & x \in \mathbb{R}_{+} \end{aligned}$	$\frac{1}{1-\frac{i \omega}{\lambda}}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$

5.1.5 Parameter estimation

Random sample - A random sample is a collection of n random variables X_{1}, \ldots, X_{n} that are independent and identically distributed with X.
\square Estimator - An estimator $\hat{\theta}$ is a function of the data that is used to infer the value of an unknown parameter θ in a statistical model
\square Bias - The bias of an estimator $\hat{\theta}$ is defined as being the difference between the expected value of the distribution of $\hat{\theta}$ and the true value, i.e.:

$$
\operatorname{Bias}(\hat{\theta})=E[\hat{\theta}]-\theta
$$

Remark: an estimator is said to be unbiased when we have $E[\hat{\theta}]=\theta$.
\square Sample mean and variance - The sample mean and the sample variance of a random sample are used to estimate the true mean μ and the true variance σ^{2} of a distribution, are noted \bar{X} and s^{2} respectively, and are such that:

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \text { and } \quad s^{2}=\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

\square Central Limit Theorem - Let us have a random sample X_{1}, \ldots, X_{n} following a given distribution with mean μ and variance σ^{2}, then we have:

$$
\bar{X} \underset{n \rightarrow+\infty}{\sim} \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)
$$

5.2 Linear Algebra and Calculus

5.2.1 General notations

\square Vector - We note $x \in \mathbb{R}^{n}$ a vector with n entries, where $x_{i} \in \mathbb{R}$ is the $i^{t h}$ entry:

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

\square Matrix - We note $A \in \mathbb{R}^{m \times n}$ a matrix with m rows and n columns, where $A_{i, j} \in \mathbb{R}$ is the entry located in the $i^{\text {th }}$ row and $j^{\text {th }}$ column:

$$
A=\left(\begin{array}{ccc}
A_{1,1} & \cdots & A_{1, n} \\
\vdots & & \vdots \\
A_{m, 1} & \cdots & A_{m, n}
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

Remark: the vector x defined above can be viewed as a $n \times 1$ matrix and is more particularly called a column-vector.

Identity matrix - The identity matrix $I \in \mathbb{R}^{n \times n}$ is a square matrix with ones in its diagonal and zero everywhere else:

$$
I=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right)
$$

Remark: for all matrices $A \in \mathbb{R}^{n \times n}$, we have $A \times I=I \times A=A$.
\square Diagonal matrix - A diagonal matrix $D \in \mathbb{R}^{n \times n}$ is a square matrix with nonzero values in its diagonal and zero everywhere else:

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & d_{n}
\end{array}\right)
$$

Remark: we also note D as $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$.

5.2.2 Matrix operations

\square Vector-vector multiplication - There are two types of vector-vector products:

- inner product: for $x, y \in \mathbb{R}^{n}$, we have:

$$
x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} \in \mathbb{R}
$$

- outer product: for $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$, we have:

$$
x y^{T}=\left(\begin{array}{ccc}
x_{1} y_{1} & \cdots & x_{1} y_{n} \\
\vdots & & \vdots \\
x_{m} y_{1} & \cdots & x_{m} y_{n}
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

\square Matrix-vector multiplication - The product of matrix $A \in \mathbb{R}^{m \times n}$ and vector $x \in \mathbb{R}^{n}$ is a vector of size \mathbb{R}^{m}, such that:

$$
A x=\left(\begin{array}{c}
a_{r, 1}^{T} x \\
\vdots \\
a_{r, m}^{T} x
\end{array}\right)=\sum_{i=1}^{n} a_{c, i} x_{i} \in \mathbb{R}^{m}
$$

where $a_{r, i}^{T}$ are the vector rows and $a_{c, j}$ are the vector columns of A, and x_{i} are the entries of x.
\square Matrix-matrix multiplication - The product of matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is a matrix of size $\mathbb{R}^{n \times p}$, such that:

$$
A B=\left(\begin{array}{ccc}
a_{r, 1}^{T} b_{c, 1} & \cdots & a_{r, 1}^{T} b_{c, p} \\
\vdots & & \vdots \\
a_{r, m}^{T} b_{c, 1} & \cdots & a_{r, m}^{T} b_{c, p}
\end{array}\right)=\sum_{i=1}^{n} a_{c, i} b_{r, i}^{T} \in \mathbb{R}^{n \times p}
$$

where $a_{r, i}^{T}, b_{r, i}^{T}$ are the vector rows and $a_{c, j}, b_{c, j}$ are the vector columns of A and B respectively.
\square Transpose - The transpose of a matrix $A \in \mathbb{R}^{m \times n}$, noted A^{T}, is such that its entries are flipped:

$$
\forall i, j, \quad A_{i, j}^{T}=A_{j, i}
$$

Remark: for matrices A, B, we have $(A B)^{T}=B^{T} A^{T}$.
\square Inverse - The inverse of an invertible square matrix A is noted A^{-1} and is the only matrix such that:

$$
A A^{-1}=A^{-1} A=I
$$

Remark: not all square matrices are invertible. Also, for matrices A, B, we have $(A B)^{-1}=$ $B^{-1} A^{-1}$
\square Trace - The trace of a square matrix A, noted $\operatorname{tr}(A)$, is the sum of its diagonal entries:

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i, i}
$$

Remark: for matrices A, B, we have $\operatorname{tr}\left(A^{T}\right)=\operatorname{tr}(A)$ and $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
\square Determinant - The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$, noted $|A|$ or $\operatorname{det}(A)$ is expressed recursively in terms of $A_{\backslash i, \backslash j}$, which is the matrix A without its $i^{\text {th }}$ row and $j^{\text {th }}$ column, as follows:

$$
\operatorname{det}(A)=|A|=\sum_{j=1}^{n}(-1)^{i+j} A_{i, j}\left|A_{\backslash i, \backslash j}\right|
$$

Remark: A is invertible if and only if $|A| \neq 0$. Also, $|A B|=|A||B|$ and $\left|A^{T}\right|=|A|$.

5.2.3 Matrix properties

\square Symmetric decomposition - A given matrix A can be expressed in terms of its symmetric and antisymmetric parts as follows:

$$
A=\underbrace{\frac{A+A^{T}}{2}}_{\text {Symmetric }}+\underbrace{\frac{A-A^{T}}{2}}_{\text {Antisymmetric }}
$$

\square Norm - A norm is a function $N: V \longrightarrow[0,+\infty[$ where V is a vector space, and such that for all $x, y \in V$, we have:

- $N(x+y) \leqslant N(x)+N(y)$
- $N(a x)=|a| N(x)$ for a scalar
- if $N(x)=0$, then $x=0$

For $x \in V$, the most commonly used norms are summed up in the table below:

Norm	Notation	Definition	Use case		
Manhattan, L^{1}	$\\|x\\|_{1}$	$\sum_{i=1}^{n}\left\|x_{i}\right\|$	LASSO regularization		
Euclidean, L^{2}	$\\|x\\|_{2}$	$\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$	Ridge regularization		
p-norm, L^{p}	$\\|x\\|_{p}$	$\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}}$	Hölder inequality		
Infinity, L^{∞}	$\\|x\\|_{\infty}$	$\max _{i}\left\|x_{i}\right\|$	Uniform convergence		

\square Linearly dependence - A set of vectors is said to be linearly dependent if one of the vectors in the set can be defined as a linear combination of the others.

Matrix rank - The rank of a given matrix A is noted $\operatorname{rank}(A)$ and is the dimension of the vector space generated by its columns. This is equivalent to the maximum number of linearly independent columns of A.
\square Positive semi-definite matrix - A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) and s noted $A \succeq 0$ if we have:

$$
A=A^{T} \quad \text { and } \quad \forall x \in \mathbb{R}^{n}, \quad x^{T} A x \geqslant 0
$$

Remark: similarly, a matrix A is said to be positive definite, and is noted $A \succ 0$, if it is a PSD matrix which satisfies for all non-zero vector $x, x^{T} A x>0$.
\square Eigenvalue, eigenvector - Given a matrix $A \in \mathbb{R}^{n \times n}, \lambda$ is said to be an eigenvalue of A if there exists a vector $z \in \mathbb{R}^{n} \backslash\{0\}$, called eigenvector, such that we have:

$$
A z=\lambda z
$$

\square Spectral theorem - Let $A \in \mathbb{R}^{n \times n}$. If A is symmetric, then A is diagonalizable by a real orthogonal matrix $U \in \mathbb{R}^{n \times n}$. By noting $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, we have:

$$
\exists \Lambda \text { diagonal, } \quad A=U \Lambda U^{T}
$$

\square Singular-value decomposition - For a given matrix A of dimensions $m \times n$, the singularvalue decomposition (SVD) is a factorization technique that guarantees the existence of $U m \times m$ unitary, $\Sigma m \times n$ diagonal and $V n \times n$ unitary matrices, such that:

$$
A=U \Sigma V^{T}
$$

5.2.4 Matrix calculus

\square Gradient - Let $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ be a function and $A \in \mathbb{R}^{m \times n}$ be a matrix. The gradient of f with respect to A is a $m \times n$ matrix, noted $\nabla_{A} f(A)$, such that:

$$
\left(\nabla_{A} f(A)\right)_{i, j}=\frac{\partial f(A)}{\partial A_{i, j}}
$$

Remark: the gradient of f is only defined when f is a function that returns a scalar.
\square Hessian - Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function and $x \in \mathbb{R}^{n}$ be a vector. The hessian of f with respect to x is a $n \times n$ symmetric matrix, noted $\nabla_{x}^{2} f(x)$, such that:

$$
\left(\nabla_{x}^{2} f(x)\right)_{i, j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}
$$

Remark: the hessian of f is only defined when f is a function that returns a scalar.
ᄀ Gradient operations - For matrices A, B, C, the following gradient properties are worth having in mind:

$$
\begin{gathered}
\nabla_{A} \operatorname{tr}(A B)=B^{T} \quad \nabla_{A^{T}} f(A)=\left(\nabla_{A} f(A)\right)^{T} \\
\nabla_{A} \operatorname{tr}\left(A B A^{T} C\right)=C A B+C^{T} A B^{T} \\
\nabla_{A}|A|=|A|\left(A^{-1}\right)^{T} \\
\hline
\end{gathered}
$$

Super VIP Cheatsheet: Deep Learning

Afshine Amidi and Shervine Amidi

November 25, 2018

Contents

1 Convolutional Neural Networks

1.1 Overview 2
1.2 Types of layer 2
1.3 Filter hyperparameters 2
1.4 Tuning hyperparameters 3
1.5 Commonly used activation functions 3
1.6 Object detection4
1.6.1 Face verification and recognition 5
1.6.2 Neural style transfer 5
1.6.3 Architectures using computational tricks 6
2 Recurrent Neural Networks 7
2.1 Overview 7
2.2 Handling long term dependencies 8
2.3 Learning word representation 9
2.3.1 Motivation and notations 9
2.3.2 Word embeddings 9
2.4 Comparing words 9
2.5 Language model 10
2.6 Machine translation 10
2.7 Attention 10
3 Deep Learning Tips and Tricks 11
3.1 Data processing 11
3.2 Training a neural network 12
3.2.1 Definitions 12
3.2.2 Finding optimal weights 12
3.3 Parameter tuning 12
3.3.1 Weights initialization 12
3.3.2 Optimizing convergence 12
3.4 Regularization 13
3.5 Good practices 13

1 Convolutional Neural Networks

1.1 Overview

\square Architecture of a traditional CNN - Convolutional neural networks, also known as CNNs, are a specific type of neural networks that are generally composed of the following layers:

The convolution layer and the pooling layer can be fine-tuned with respect to hyperparameters that are described in the next sections.

1.2 Types of layer

\square Convolutional layer (CONV) - The convolution layer (CONV) uses filters that perform convolution operations as it is scanning the input I with respect to its dimensions. Its hyperparameters include the filter size F and stride S. The resulting output O is called feature map or activation map.

Remark: the convolution step can be generalized to the $1 D$ and 3D cases as well.
\square Pooling (POOL) - The pooling layer (POOL) is a downsampling operation, typically applied after a convolution layer, which does some spatial invariance. In particular, max and average after a convoling are special kinds of pooling where the maximum and average value is taken, respectively.

Max pooling	Average pooling	
Purpose	Each pooling operation selects the maximum value of the current view	Each pooling operation averages the values of the current view
Illustration	\longrightarrow	\square

\square Fully Connected (FC) - The fully connected layer (FC) operates on a flattened input where each input is connected to all neurons. If present, FC layers are usually found towards the end of CNN architectures and can be used to optimize objectives such as class scores.

1.3 Filter hyperparameters

The convolution layer contains filters for which it is important to know the meaning behind its hyperparameters.
\square Dimensions of a filter - A filter of size $F \times F$ applied to an input containing C channels is a $F \times F \times C$ volume that performs convolutions on an input of size $I \times I \times C$ and produces an output feature map (also called activation map) of size $O \times O \times 1$.

Filter 1

Filter 2

Filter K

Remark: the application of K filters of size $F \times F$ results in an output feature map of size $O \times O \times K$.
\square Stride - For a convolutional or a pooling operation, the stride S denotes the number of pixels by which the window moves after each operation.

\square Zero-padding - Zero-padding denotes the process of adding P zeroes to each side of the boundaries of the input. This value can either be manually specified or automatically set through one of the three modes detailed below:

	Valid	Same	Full
Value	$P=0$	$\begin{aligned} & P_{\text {start }}=\left\lfloor\frac{S\left\lceil\frac{I}{S}\right\rceil-I+F-S}{2}\right\rfloor \\ & P_{\text {end }}=\left\lceil\frac{S\left\lceil\frac{I}{S}\right\rceil-I+F-S}{2}\right\rceil \end{aligned}$	$\begin{gathered} P_{\text {start }} \in \llbracket 0, F-1 \rrbracket \\ P_{\mathrm{end}}=F-1 \end{gathered}$
Illustration			
Purpose	- No padding - Drops last convolution if dimensions do not match	- Padding such that feature map size has size $\left\lceil\frac{I}{S}\right\rceil$ - Output size is mathematically convenient - Also called 'half' padding	- Maximum padding such that end convolutions are applied on the limits of the input - Filter 'sees' the input end-to-end

1.4 Tuning hyperparameters

\square Parameter compatibility in convolution layer - By noting I the length of the input volume size, F the length of the filter, P the amount of zero padding, S the stride, then the output size O of the feature map along that dimension is given by:

$$
O=\frac{I-F+P_{\text {start }}+P_{\mathrm{end}}}{S}+1
$$

Input
Filter

Remark: often times, $P_{\text {start }}=P_{\text {end }} \triangleq P$, in which case we can replace $P_{\text {start }}+P_{\text {end }}$ by $2 P$ in the formula above.
\square Understanding the complexity of the model - In order to assess the complexity of a model, it is often useful to determine the number of parameters that its architecture will have. In a given layer of a convolutional neural network, it is done as follows:

	CONV	POOL	FC
Illustration			
Input size	$I \times I \times C$	$I \times I \times C$	$N_{\text {in }}$
Output size	$O \times O \times K$	$O \times O \times C$	$N_{\text {out }}$
Number of parameters	$(F \times F \times C+1) \cdot K$	0	$\left(N_{\text {in }}+1\right) \times N_{\text {out }}$
Remarks	- One bias parameter per filter - In most cases, $S<F$ - A common choice for K is $2 C$	- Pooling operation done channel-wise - In most cases, $S=F$	- Input is flattened - One bias parameter per neuron - The number of FC neurons is free of structural constraints

\square Receptive field - The receptive field at layer k is the area denoted $R_{k} \times R_{k}$ of the input that each pixel of the k-th activation map can 'see'. By calling F_{j} the filter size of layer j and S_{i} the stride value of layer i and with the convention $S_{0}=1$, the receptive field at layer k can be computed with the formula:

$$
R_{k}=1+\sum_{j=1}^{k}\left(F_{j}-1\right) \prod_{i=0}^{j-1} S_{i}
$$

In the example below, we have $F_{1}=F_{2}=3$ and $S_{1}=S_{2}=1$, which gives $R_{2}=1+2 \cdot 1+2 \cdot 1=$ 5.

1.5 Commonly used activation functions

\square Rectified Linear Unit - The rectified linear unit layer (ReLU) is an activation function g that is used on all elements of the volume. It aims at introducing non-linearities to the network. Its variants are summarized in the table below:

ReLU	Leaky ReLU	ELU
$g(z)=\max (0, z)$	$g(z)=\max (\epsilon z, z)$ with $\epsilon \ll 1$	$g(z)=\max \left(\alpha\left(e^{z}-1\right), z\right)$ with $\alpha \ll 1$

\square Softmax - The softmax step can be seen as a generalized logistic function that takes as input a vector of scores $x \in \mathbb{R}^{n}$ and outputs a vector of output probability $p \in \mathbb{R}^{n}$ through a softmax function at the end of the architecture. It is defined as follows:

$$
p=\left(\begin{array}{c}
p_{1} \\
\vdots \\
p_{n}
\end{array}\right) \quad \text { where } \quad p_{i}=\frac{e^{x_{i}}}{\sum_{j=1}^{n} e^{x_{j}}}
$$

1.6 Object detection

\square Types of models - There are 3 main types of object recognition algorithms, for which the nature of what is predicted is different. They are described in the table below:

Image classification	Classification w. localization	Detection
Teddy bear		Teddy bear
- Classifies a picture	- Detects object in a picture - Predicts probability object and where it is of object	- Detects up to several objects in a picture - Predicts probabilities of objects and where they are located
Traditional CNN	Simplified YOLO, R-CNN	YOLO, R-CNN

Bounding box detection	Landmark detection
Detects the part of the image where the object is located	- Detects a shape or characteristics of an object (e.g. eyes) - More granular
\qquad	$\begin{array}{cr} \left(l_{1 x}, l_{1 y}\right) & \left(l_{2 x}, l_{2 y}\right) \\ \left(l_{4 x}, l_{4 y}\right) & \left(l_{7 x}, l_{7 y}\right) \\ \left(l_{5 x}, l_{5 y}\right) & \left(l_{3 x}, l_{3 y}\right) \\ \left(l_{6 x}, l_{8 y}\right) \\ \left(l_{6 x}, l_{6 y}\right) & \left(l_{9 x}, l_{9 y}\right) \\ & \\ \hline \end{array}$
Box of center $\left(b_{x}, b_{y}\right)$, height b_{h} and width b_{w}	Reference points $\left(l_{1 x}, l_{1 y}\right), \ldots,\left(l_{n x}, l_{n y}\right)$

\square Intersection over Union - Intersection over Union, also known as IoU, is a function that quantifies how correctly positioned a predicted bounding box B_{p} is over the actual bounding box B_{a}. It is defined as:

$$
\operatorname{IoU}\left(B_{p}, B_{a}\right)=\frac{B_{p} \cap B_{a}}{B_{p} \cup B_{a}}
$$

Remark: we always have $I o U \in[0,1]$. By convention, a predicted bounding box B_{p} is considered as being reasonably good if $\operatorname{Io} U\left(B_{p}, B_{a}\right) \geqslant 0.5$.
\square Anchor boxes - Anchor boxing is a technique used to predict overlapping bounding boxes. In practice, the network is allowed to predict more than one box simultaneously, where each box prediction is constrained to have a given set of geometrical properties. For instance, the first prediction can potentially be a rectangular box of a given form, while the second will be another rectangular box of a different geometrical form.
\square Non-max suppression - The non-max suppression technique aims at removing duplicate overlapping bounding boxes of a same object by selecting the most representative ones. After having removed all boxes having a probability prediction lower than 0.6 , the following steps are repeated while there are boxes remaining:

- Step 1: Pick the box with the largest prediction probability.
- Step 2: Discard any box having an IoU $\geqslant 0.5$ with the previous box.

\square YOLO - You Only Look Once (YOLO) is an object detection algorithm that performs the following steps:
- Step 1: Divide the input image into a $G \times G$ grid.
- Step 2: For each grid cell, run a CNN that predicts y of the following form:

$$
y=[\underbrace{p_{c}, b_{x}, b_{y}, b_{h}, b_{w}, c_{1}, c_{2}, \ldots, c_{p}}_{\text {repeated } k \text { times }}, \ldots]^{T} \in \mathbb{R}^{G \times G \times k \times(5+p)}
$$

where p_{c} is the probability of detecting an object, $b_{x}, b_{y}, b_{h}, b_{w}$ are the properties of the detected bouding box, c_{1}, \ldots, c_{p} is a one-hot representation of which of the p classes were detected, and k is the number of anchor boxes.

- Step 3: Run the non-max suppression algorithm to remove any potential duplicate overlapping bounding boxes.

Remark: when $p_{c}=0$, then the network does not detect any object. In that case, the corresponding predictions b_{x}, \ldots, c_{p} have to be ignored.

I R-CNN - Region with Convolutional Neural Networks (R-CNN) is an object detection algorithm that first segments the image to find potential relevant bounding boxes and then run the detection algorithm to find most probable objects in those bounding boxes.

Original image \longrightarrow Segmentation
Original image \longrightarrow Segmentation \longrightarrow Bounding box prediction \longrightarrow Non-max suppression
Remark: although the original algorithm is computationally expensive and slow, newer architectures enabled the algorithm to run faster, such as Fast $R-C N N$ and Faster $R-C N N$.

1.6.1 Face verification and recognition

\square Types of models - Two main types of model are summed up in table below:

Face verification	Face recognition
- Is this the correct person? - One-to-one lookup	- Is this one of the K persons in the database? - One-to-many lookup
Query	

\square One Shot Learning - One Shot Learning is a face verification algorithm that uses a limited training set to learn a similarity function that quantifies how different two given images are. The similarity function applied to two images is often noted d (image 1 , image 2).
\square Siamese Network - Siamese Networks aim at learning how to encode images to then quantify how different two images are. For a given input image $x^{(i)}$, the encoded output is often noted as $f\left(x^{(i)}\right)$.
\square Triplet loss - The triplet loss ℓ is a loss function computed on the embedding representation of a triplet of images A (anchor), P (positive) and N (negative). The anchor and the positive example belong to a same class, while the negative example to another one. By calling $\alpha \in \mathbb{R}^{+}$ the margin parameter, this loss is defined as follows:

$$
\ell(A, P, N)=\max (d(A, P)-d(A, N)+\alpha, 0)
$$

1.6.2 Neural style transfer

\square Motivation - The goal of neural style transfer is to generate an image G based on a given content C and a given style S.

\square Activation - In a given layer l, the activation is noted $a^{[l]}$ and is of dimensions $n_{H} \times n_{w} \times n_{c}$
\square Content cost function - The content cost function $J_{\text {content }}(C, G)$ is used to determine how the generated image G differs from the original content image C. It is defined as follows

$$
J_{\text {content }}(C, G)=\frac{1}{2}\left\|a^{[l](C)}-a^{[l](G)}\right\|^{2}
$$

\square Style matrix - The style matrix $G^{[l]}$ of a given layer l is a Gram matrix where each of its elements $G_{k k^{\prime}}^{[l]}$ quantifies how correlated the channels k and k^{\prime} are. It is defined with respect to activations $a^{[l]}$ as follows:

$$
G_{k k^{\prime}}^{[l]}=\sum_{i=1}^{n_{H}^{[l]}} \sum_{j=1}^{[l]]} a_{i j k}^{[l]} a_{i j k^{\prime}}^{[l]}
$$

Remark: the style matrix for the style image and the generated image are noted $G^{[l](S)}$ and $G^{[l](G)}$ respectively.
\square Style cost function - The style cost function $J_{\text {style }}(S, G)$ is used to determine how the generated image G differs from the style S. It is defined as follows:

$$
J_{\text {style }}^{[l]}(S, G)=\frac{1}{\left(2 n_{H} n_{w} n_{c}\right)^{2}}\left\|G^{[l](S)}-G^{[l](G)}\right\|_{F}^{2}=\frac{1}{\left(2 n_{H} n_{w} n_{c}\right)^{2}} \sum_{k, k^{\prime}=1}^{n_{c}}\left(G_{k k^{\prime}}^{[l](S)}-G_{k k^{\prime}}^{[l](G)}\right)^{2}
$$

\square Overall cost function - The overall cost function is defined as being a combination of the content and style cost functions, weighted by parameters α, β, as follows:

$$
J(G)=\alpha J_{\text {content }}(C, G)+\beta J_{\text {style }}(S, G)
$$

Remark: a higher value of α will make the model care more about the content while a higher value of β will make it care more about the style.

1.6.3 Architectures using computational tricks

\square Generative Adversarial Network - Generative adversarial networks, also known as GANs are composed of a generative and a discriminative model, where the generative model aims at generating the most truthful output that will be fed into the discriminative which aims at differentiating the generated and true image

Remark: use cases using variants of GANs include text to image, music generation and synthesis.
\square ResNet - The Residual Network architecture (also called ResNet) uses residual blocks with a high number of layers meant to decrease the training error. The residual block has the following characterizing equation

$$
a^{[l+2]}=g\left(a^{[l]}+z^{[l+2]}\right)
$$

\square Inception Network - This architecture uses inception modules and aims at giving a try at different convolutions in order to increase its performance. In particular, it uses the 1×1 convolution trick to lower the burden of computation.

2 Recurrent Neural Networks

2.1 Overview

\square Architecture of a traditional RNN - Recurrent neural networks, also known as RNNs, are a class of neural networks that allow previous outputs to be used as inputs while having hidden states. They are typically as follows:

For each timestep t, the activation $a^{<t>}$ and the output $y^{<t>}$ are expressed as follows:

$$
a^{<t>}=g_{1}\left(W_{a a} a^{<t-1>}+W_{a x} x^{<t>}+b_{a}\right) \quad \text { and } \quad y^{<t>}=g_{2}\left(W_{y a} a^{<t>}+b_{y}\right)
$$

where $W_{a x}, W_{a a}, W_{y a}, b_{a}, b_{y}$ are coefficients that are shared temporally and g_{1}, g_{2} activation functions

The pros and cons of a typical RNN architecture are summed up in the table below:

Advantages	Drawbacks
- Possibility of processing input of any length	- Computation being slow
- Model size not increasing with size of input	- Difficulty of accessing information
- Computation takes into account	from a long time ago
historical information	- Cannot consider any future input
- Weights are shared across time	for the current state

\square Applications of RNNs - RNN models are mostly used in the fields of natural language processing and speech recognition. The different applications are summed up in the table below:

Type of RNN	Illustration	Example
One-to-one $T_{x}=T_{y}=1$		Traditional neural network
One-to-many $T_{x}=1, T_{y}>1$		Music generation
Many-to-one $T_{x}>1, T_{y}=1$		Sentiment classification
Many-to-many $T_{x}=T_{y}$		Name entity recognition
Many-to-many $T_{x} \neq T_{y}$		Machine translation

\square Loss function - In the case of a recurrent neural network, the loss function \mathcal{L} of all time steps is defined based on the loss at every time step as follows:

$$
\mathcal{L}(\widehat{y}, y)=\sum_{t=1}^{T_{y}} \mathcal{L}\left(\widehat{y}^{<t>}, y^{<t>}\right)
$$

$$
\frac{\partial \mathcal{L}^{(T)}}{\partial W}=\left.\sum_{t=1}^{T} \frac{\partial \mathcal{L}^{(T)}}{\partial W}\right|_{(t)}
$$

2.2 Handling long term dependencies

\square Commonly used activation functions - The most common activation functions used in RNN modules are described below:

Sigmoid	Tanh	RELU
$g(z)=\frac{1}{1+e^{-z}}$	$g(z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}$	$g(z)=\max (0, z)$

\square Vanishing/exploding gradient - The vanishing and exploding gradient phenomena are often encountered in the context of RNNs. The reason why they happen is that it is difficult to capture long term dependencies because of multiplicative gradient that can be exponentially decreasing/increasing with respect to the number of layers.
\square Gradient clipping - It is a technique used to cope with the exploding gradient problem sometimes encountered when performing backpropagation. By capping the maximum value for the gradient, this phenomenon is controlled in practice.

\square Types of gates - In order to remedy the vanishing gradient problem, specific gates are used in some types of RNNs and usually have a well-defined purpose. They are usually noted Γ and are equal to:

$$
\Gamma=\sigma\left(W x^{<t>}+U a^{<t-1>}+b\right)
$$

where W, U, b are coefficients specific to the gate and σ is the sigmoid function. The main ones are summed up in the table below:

Type of gate	Role	Used in
Update gate Γ_{u}	How much past should matter now?	GRU, LSTM
Relevance gate Γ_{r}	Drop previous information?	GRU, LSTM
Forget gate Γ_{f}	Erase a cell or not?	LSTM
Output gate Γ_{o}	How much to reveal of a cell?	LSTM

\square GRU/LSTM - Gated Recurrent Unit (GRU) and Long Short-Term Memory units (LSTM) deal with the vanishing gradient problem encountered by traditional RNNs, with LSTM being a generalization of GRU. Below is a table summing up the characterizing equations of each architecture:

	Gated Recurrent Unit (GRU)	Long Short-Term Memory (LSTM)
$\tilde{c}^{<t>}$	$\tanh \left(W_{c}\left[\Gamma_{r} \star a^{<t-1>}, x^{<t>}\right]+b_{c}\right)$	$\tanh \left(W_{c}\left[\Gamma_{r} \star a^{<t-1>}, x^{<t>}\right]+b_{c}\right)$
$c^{<t>}$	$\Gamma_{u} \star \tilde{c}^{<t>}+\left(1-\Gamma_{u}\right) \star c^{<t-1>}$	$\Gamma_{u} \star \tilde{c}^{<t>}+\Gamma_{f} \star c^{<t-1>}$
$a^{<t>}$	$c^{<t>}$	$\Gamma_{o} \star c^{<t>}$
Dependencies		

Remark: the sign \star denotes the element-wise multiplication between two vectors.
\square Variants of RNNs - The table below sums up the other commonly used RNN architectures:

2.3 Learning word representation

In this section, we note V the vocabulary and $|V|$ its size.

2.3.1 Motivation and notations

\square Representation techniques - The two main ways of representing words are summed up in the table below:

1-hot representation	Word embedding
- Noted o_{w} - Naive approach, no similarity information	- Noted e_{w} - Takes into account words similarity

\square Embedding matrix - For a given word w, the embedding matrix E is a matrix that maps its 1-hot representation o_{w} to its embedding e_{w} as follows:

$$
e_{w}=E o_{w}
$$

Remark: learning the embedding matrix can be done using target/context likelihood models.

2.3.2 Word embeddings

\square Word2vec - Word2vec is a framework aimed at learning word embeddings by estimating the likelihood that a given word is surrounded by other words. Popular models include skip-gram, negative sampling and CBOW.

\square Skip-gram - The skip-gram word2vec model is a supervised learning task that learns word embeddings by assessing the likelihood of any given target word t happening with a context word c. By noting θ_{t} a parameter associated with t, the probability $P(t \mid c)$ is given by:

$$
P(t \mid c)=\frac{\exp \left(\theta_{t}^{T} e_{c}\right)}{\sum_{j=1}^{|V|} \exp \left(\theta_{j}^{T} e_{c}\right)}
$$

Remark: summing over the whole vocabulary in the denominator of the softmax part makes this model computationally expensive. CBOW is another word2vec model using the surrounding words to predict a given word.
\square Negative sampling - It is a set of binary classifiers using logistic regressions that aim at assessing how a given context and a given target words are likely to appear simultaneously, with the models being trained on sets of k negative examples and 1 positive example. Given a context word c and a target word t, the prediction is expressed by:

$$
P(y=1 \mid c, t)=\sigma\left(\theta_{t}^{T} e_{c}\right)
$$

Remark: this method is less computationally expensive than the skip-gram model.
\square GloVe - The GloVe model, short for global vectors for word representation, is a word embedding technique that uses a co-occurence matrix X where each $X_{i, j}$ denotes the number of times that a target i occurred with a context j. Its cost function J is as follows:

$$
J(\theta)=\frac{1}{2} \sum_{i, j=1}^{|V|} f\left(X_{i j}\right)\left(\theta_{i}^{T} e_{j}+b_{i}+b_{j}^{\prime}-\log \left(X_{i j}\right)\right)^{2}
$$

here f is a weighting function such that $X_{i, j}=0 \Longrightarrow f\left(X_{i, j}\right)=0$.
Given the symmetry that e and θ play in this model, the final word embedding $e_{w}^{(\text {final })}$ is given by:

$$
e_{w}^{(\text {final })}=\frac{e_{w}+\theta_{w}}{2}
$$

Remark: the individual components of the learned word embeddings are not necessarily inter pretable.

2.4 Comparing words

\square Cosine similarity - The cosine similarity between words w_{1} and w_{2} is expressed as follows:

$$
\text { similarity }=\frac{w_{1} \cdot w_{2}}{\left\|w_{1}\right\|\left\|w_{2}\right\|}=\cos (\theta)
$$

Remark: θ is the angle between words w_{1} and w_{2}.

$\square t$-SNE - t-SNE (t-distributed Stochastic Neighbor Embedding) is a technique aimed at reducing high-dimensional embeddings into a lower dimensional space. In practice, it is commonly used to visualize word vectors in the 2D space.

literature knowledge Shahnameh	entertaining	
$\stackrel{\text { art }}{\circ}$ culture ${ }^{\circ}$ poem		
book reading		

2.5 Language model

\square Overview - A language model aims at estimating the probability of a sentence $P(y)$
$\square n$-gram model - This model is a naive approach aiming at quantifying the probability that an expression appears in a corpus by counting its number of appearance in the training data.
\square Perplexity - Language models are commonly assessed using the perplexity metric, also known as PP, which can be interpreted as the inverse probability of the dataset normalized by the number of words 1 . The perplexity is such that the lower, the better and is defined as follows:

$$
\mathrm{PP}=\prod_{t=1}^{T}\left(\frac{1}{\sum_{j=1}^{|V|} y_{j}^{(t)} \cdot \widehat{y}_{j}^{(t)}}\right)^{\frac{1}{T}}
$$

Remark: PP is commonly used in t-SNE.

2.6 Machine translation

\square Overview - A machine translation model is similar to a language model except it has an encoder network placed before. For this reason, it is sometimes referred as a conditional language model. The goal is to find a sentence y such that:

$$
y=\underset{y<1>, \ldots, y^{<T_{y}>}}{\arg \max } P\left(y^{<1>}, \ldots, y^{<T_{y}>} \mid x\right)
$$

\square Beam search - It is a heuristic search algorithm used in machine translation and speech recognition to find the likeliest sentence y given an input x.

- Step 1: Find top B likely words $y^{<1>}$
- Step 2: Compute conditional probabilities $y^{<k>} \mid x, y^{<1>}, \ldots, y^{<k-1>}$
- Step 3: Keep top B combinations $x, y^{<1>}, \ldots, y^{<k>}$

Remark: if the beam width is set to 1, then this is equivalent to a naive greedy search.
Beam width - The beam width B is a parameter for beam search. Large values of B yield to better result but with slower performance and increased memory. Small values of B lead to worse results but is less computationally intensive. A standard value for B is around 10 .
\square Length normalization - In order to improve numerical stability, beam search is usually applied on the following normalized objective, often called the normalized log-likelihood objective, defined as:

$$
\text { Objective }=\frac{1}{T_{y}^{\alpha}} \sum_{t=1}^{T_{y}} \log \left[p\left(y^{<t>} \mid x, y^{<1>}, \ldots, y^{<t-1>}\right)\right]
$$

Remark: the parameter α can be seen as a softener, and its value is usually between 0.5 and 1 .
\square Error analysis - When obtaining a predicted translation \widehat{y} that is bad, one can wonder why we did not get a good translation y^{*} by performing the following error analysis:

Case	$P\left(y^{*} \mid x\right)>P(\widehat{y} \mid x)$	$P\left(y^{*} \mid x\right) \leqslant P(\widehat{y} \mid x)$
Root cause	Beam search faulty	RNN faulty
Remedies	Increase beam width	- Try different architecture - Regularize - Get more data

\neg Bleu score - The bilingual evaluation understudy (bleu) score quantifies how good a machine translation is by computing a similarity score based on n-gram precision. It is defined as follows:

$$
\text { bleu score }=\exp \left(\frac{1}{n} \sum_{k=1}^{n} p_{k}\right)
$$

where p_{n} is the bleu score on n-gram only defined as follows:

$$
p_{n}=\frac{\sum_{\mathrm{n}-\text { gram } \in \widehat{y}} \operatorname{count}_{\mathrm{clip}}(\mathrm{n}-\mathrm{gram})}{\sum_{\mathrm{n}-\text { gram } \in \widehat{y}} \operatorname{count}(\mathrm{n}-\mathrm{gram})}
$$

Remark: a brevity penalty may be applied to short predicted translations to prevent an artificially
inflated bleu score.

2.7 Attention

Attention model - This model allows an RNN to pay attention to specific parts of the input that is considered as being important, which improves the performance of the resulting model in practice. By noting $\alpha^{<t, t^{\prime}>}$ the amount of attention that the output $y^{<t>}$ should pay to the activation $a^{<t^{\prime}>}$ and $c^{<t>}$ the context at time t, we have:

$$
c^{<t>}=\sum_{t^{\prime}} \alpha^{<t, t^{\prime}>} a^{<t^{\prime}>} \quad \text { with } \quad \sum_{t^{\prime}} \alpha^{<t, t^{\prime}>}=1
$$

Remark: the attention scores are commonly used in image captioning and machine translation.

A cute teddy bear is reading Persian literature

A cute teddy bear is reading Persian literature
\square Attention weight - The amount of attention that the output $y^{<t>}$ should pay to the activation $a^{<t^{\prime}>}$ is given by $\alpha^{<t, t^{\prime}>}$ computed as follows:

$$
\alpha^{<t, t^{\prime}>}=\frac{\exp \left(e^{<t, t^{\prime}>}\right)}{\sum_{t^{\prime \prime}=1}^{T_{x}} \exp \left(e^{<t, t^{\prime \prime}>}\right)}
$$

Remark: computation complexity is quadratic with respect to T_{x}.

3 Deep Learning Tips and Tricks

3.1 Data processing

\square Data augmentation - Deep learning models usually need a lot of data to be properly trained It is often useful to get more data from the existing ones using data augmentation techniques The main ones are summed up in the table below. More precisely, given the following input image, here are the techniques that we can apply:

Original	Flip	Rotation	Random crop
		- Flipped with respect to an axis for which the meaning of the image is preserved	- Rotation with a slight angle - Simulates incorrect horizon calibration
- Image without	- Random focus on one part of the image - Several random crops can be done in a row		
any modification			

Color shift	Noise addition	Information loss	Contrast change
- Nuances of RGB is slightly changed - Captures noise that can occur with light exposure	- Addition of noise - More tolerance to quality variation of inputs	- Parts of image ignored - Mimics potential loss of parts of image	- Luminosity changes - Controls difference in exposition due to time of day

\square Batch normalization - It is a step of hyperparameter γ, β that normalizes the batch $\left\{x_{i}\right\}$. By noting μ_{B}, σ_{B}^{2} the mean and variance of that we want to correct to the batch, it is done as follows:

$$
x_{i} \longleftarrow \gamma \frac{x_{i}-\mu_{B}}{\sqrt{\sigma_{B}^{2}+\epsilon}}+\beta
$$

It is usually done after a fully connected/convolutional layer and before a non-linearity layer and aims at allowing higher learning rates and reducing the strong dependence on initialization.

3.2 Training a neural network

3.2.1 Definitions

\square Epoch - In the context of training a model, epoch is a term used to refer to one iteration where the model sees the whole training set to update its weights.
\square Mini-batch gradient descent - During the training phase, updating weights is usually not based on the whole training set at once due to computation complexities or one data point due to noise issues. Instead, the update step is done on mini-batches, where the number of data points in a batch is a hyperparameter that we can tune
\square Loss function - In order to quantify how a given model performs, the loss function L is usually used to evaluate to what extent the actual outputs y are correctly predicted by the model outputs z.
\square Cross-entropy loss - In the context of binary classification in neural networks, the cross entropy loss $L(z, y)$ is commonly used and is defined as follows:

$$
L(z, y)=-[y \log (z)+(1-y) \log (1-z)]
$$

3.2.2 Finding optimal weights

\square Backpropagation - Backpropagation is a method to update the weights in the neural network by taking into account the actual output and the desired output. The derivative with respect to each weight w is computed using the chain rule.

Using this method, each weight is updated with the rule:

$$
w \longleftarrow w-\alpha \frac{\partial L(z, y)}{\partial w}
$$

\square Updating weights - In a neural network, weights are updated as follows:

- Step 1: Take a batch of training data and perform forward propagation to compute the loss.
- Step 2: Backpropagate the loss to get the gradient of the loss with respect to each weight
- Step 3: Use the gradients to update the weights of the network.

(1) Forward propagation

(2) Backpropagation

(3) Weights update

3.3 Parameter tuning

3.3.1 Weights initialization

\square Xavier initialization - Instead of initializing the weights in a purely random manner, Xavier initialization enables to have initial weights that take into account characteristics that are unique to the architecture.
\checkmark Transfer learning - Training a deep learning model requires a lot of data and more importantly a lot of time. It is often useful to take advantage of pre-trained weights on huge datasets that took days/weeks to train, and leverage it towards our use case. Depending on how much data we have at hand, here are the different ways to leverage this:

Training size	Illustration	Explanation
Small		Freezes all layers, trains weights on softmax
Medium		Freezes most layers, trains weights on last layers and softmax
Large		Trains weights on layers and softmax by initializing weights on pre-trained ones

3.3.2 Optimizing convergence

\square Learning rate - The learning rate, often noted α or sometimes η, indicates at which pace the weights get updated. It can be fixed or adaptively changed. The current most popular method is called Adam, which is a method that adapts the learning rate.
\square Adaptive learning rates - Letting the learning rate vary when training a model can reduce the training time and improve the numerical optimal solution. While Adam optimizer is the most commonly used technique, others can also be useful. They are summed up in the table below:

Method	Explanation	Update of w	Update of b
Momentum	- Dampens oscillations - Improvement to SGD -2 parameters to tune	$w-\alpha v_{d w}$	$b-\alpha v_{d b}$
RMSprop	- Root Mean Square propagation - Speeds up learning algorithm by controlling oscillations	$w-\alpha \frac{d w}{\sqrt{s_{d w}}}$	$b \longleftarrow b-\alpha \frac{d b}{\sqrt{s_{d b}}}$
Adam	- Adaptive Moment estimation - Most popular method -4 parameters to tune	$w-\alpha \frac{v_{d w}}{\sqrt{s_{d w}}+\epsilon}$	$b \longleftarrow b-\alpha \frac{v_{d b}}{\sqrt{s_{d b}}+\epsilon}$

Remark: other methods include Adadelta, Adagrad and SGD.

3.4 Regularization

\square Dropout - Dropout is a technique used in neural networks to prevent overfitting the training data by dropping out neurons with probability $p>0$. It forces the model to avoid relying too much on particular sets of features.

Remark: most deep learning frameworks parametrize dropout through the 'keep' parameter $1-p$. \square Weight regularization - In order to make sure that the weights are not too large and that the model is not overfitting the training set, regularization techniques are usually performed on the model weights. The main ones are summed up in the table below:

LASSO	Ridge	Elastic Net
- Shrinks coefficients to 0 - Good for variable selection	Makes coefficients smaller	Tradeoff between variable selection and small coefficients

\square Early stopping - This regularization technique stops the training process as soon as the validation loss reaches a plateau or starts to increase.

3.5 Good practices

\square Overfitting small batch - When debugging a model, it is often useful to make quick tests to see if there is any major issue with the architecture of the model itself. In particular, in order to make sure that the model can be properly trained, a mini-batch is passed inside the network to see if it can overfit on it. If it cannot, it means that the model is either too complex or not complex enough to even overfit on a small batch, let alone a normal-sized training set.
\square Gradient checking - Gradient checking is a method used during the implementation of the backward pass of a neural network. It compares the value of the analytical gradient to the numerical gradient at given points and plays the role of a sanity-check for correctness

	Numerical gradient	Analytical gradient
Formula	$\frac{d f}{d x}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}$	$\frac{d f}{d x}(x)=f^{\prime}(x)$
Comments	- Expensive; loss has to be computed two times per dimension - Used to verify correctness of analytical implementation -Trade-off in choosing h not too small (numerical instability) nor too large (poor gradient approx.)	- 'Exact' result

Super VIP Cheatsheet: Artificial Intelligence

Afshine Amidi and Shervine Amidi

September 8, 2019
Contents
1 Reflex-based models 2
1.1 Linear predictors 2
1.1.1 Classification 2
1.1.2 Regression 2
1.2 Loss minimization 2
1.3 Non-linear predictors 3
1.4 Stochastic gradient descent 3
1.5 Fine-tuning models 3
1.6 Unsupervised Learning 4
1.6.1 k-means 4
1.6.2 Principal Component Analysis 4
2 States-based models 5
2.1 Search optimization 5
2.1.1 Tree search 5
2.1.2 Graph search 6
2.1.3 Learning costs 7
2.1.4 A* search 7
2.1.5 Relaxation 8
2.2 Markov decision processes 8
2.2.1 Notations 8
2.2.2 Applications 9
2.2.3 When unknown transitions and rewards 9
2.3 Game playing 10
2.3.1 Speeding up minimax 11
2.3.2 Simultaneous games 11
2.3.3 Non-zero-sum games 12
3 Variables-based models 12
3.1 Constraint satisfaction problems 12
3.1.1 Factor graphs 12
3.1.2 Dynamic ordering 12
3.1.3 Approximate methods 13
3.1.4 Factor graph transformations 13
3.2 Bayesian networks 14
3.2.1 Introduction 14
3.2.2 Probabilistic programs 15
3.2.3 Inference 15
4 Logic-based models 16
4.1 Basics 16
4.2 Knowledge base 17
4.3 Propositional logic 18
4.4 First-order logic 18

1 Reflex-based models

1.1 Linear predictors

In this section, we will go through reflex-based models that can improve with experience, by going through samples that have input-output pairs.
\square Feature vector - The feature vector of an input x is noted $\phi(x)$ and is such that

$$
\phi(x)=\left[\begin{array}{c}
\phi_{1}(x) \\
\vdots \\
\phi_{d}(x)
\end{array}\right] \in \mathbb{R}^{d}
$$

\square Score - The score $s(x, w)$ of an example $(\phi(x), y) \in \mathbb{R}^{d} \times \mathbb{R}$ associated to a linear model of weights $w \in \mathbb{R}^{d}$ is given by the inner product:

$$
s(x, w)=w \cdot \phi(x)
$$

1.1.1 Classification

\square Linear classifier - Given a weight vector $w \in \mathbb{R}^{d}$ and a feature vector $\phi(x) \in \mathbb{R}^{d}$, the binary linear classifier f_{w} is given by:

$$
f_{w}(x)=\operatorname{sign}(s(x, w))=\left\{\begin{array}{ccc}
+1 & \text { if } w \cdot \phi(x)>0 \\
-1 & \text { if } w \cdot \phi(x)<0 \\
? & \text { if } w \cdot \phi(x)=0
\end{array}\right.
$$

\square Margin - The margin $m(x, y, w) \in \mathbb{R}$ of an example $(\phi(x), y) \in \mathbb{R}^{d} \times\{-1,+1\}$ associated to a linear model of weights $w \in \mathbb{R}^{d}$ quantifies the confidence of the prediction: larger values are better. It is given by:

$$
m(x, y, w)=s(x, w) \times y
$$

1.1.2 Regression

\square Linear regression - Given a weight vector $w \in \mathbb{R}^{d}$ and a feature vector $\phi(x) \in \mathbb{R}^{d}$, the output of a linear regression of weights w denoted as f_{w} is given by:

$$
f_{w}(x)=s(x, w)
$$

\square Residual - The residual res $(x, y, w) \in \mathbb{R}$ is defined as being the amount by which the prediction $f_{w}(x)$ overshoots the target y :

$$
\operatorname{res}(x, y, w)=f_{w}(x)-y
$$

1.2 Loss minimization

\square Loss function - A loss function $\operatorname{Loss}(x, y, w)$ quantifies how unhappy we are with the weights w of the model in the prediction task of output y from input x. It is a quantity we want to minimize during the training process
\square Classification case - The classification of a sample x of true label $y \in\{-1,+1\}$ with a linear model of weights w can be done with the predictor $f_{w}(x) \triangleq \operatorname{sign}(s(x, w))$. In this situation, a metric of interest quantifying the quality of the classification is given by the margin $m(x, y, w)$, and can be used with the following loss functions:

Name	Zero-one loss	Hinge loss	Logistic loss
$\operatorname{Loss}(x, y, w)$	$1_{\{m(x, y, w) \leqslant 0\}}$	$\max (1-m(x, y, w), 0)$	$\log \left(1+e^{-m(x, y, w)}\right)$
Illustration			

\square Regression case - The prediction of a sample x of true label $y \in \mathbb{R}$ with a linear model of weights w can be done with the predictor $f_{w}(x) \triangleq s(x, w)$. In this situation, a metric of interest quantifying the quality of the regression is given by the margin res (x, y, w) and can be used with the following loss functions:

Name	Squared loss	Absolute deviation loss
$\operatorname{Loss}(x, y, w)$	$(\operatorname{res}(x, y, w))^{2}$	$\|\operatorname{res}(x, y, w)\|$
Illustration		

\square Loss minimization framework - In order to train a model, we want to minimize the training loss is defined as follows:

$$
\operatorname{TrainLoss}(w)=\frac{1}{\left|\mathcal{D}_{\text {train }}\right|} \sum_{(x, y) \in \mathcal{D}_{\text {train }}} \operatorname{Loss}(x, y, w)
$$

1.3 Non-linear predictors

$\square k$-nearest neighbors - The k-nearest neighbors algorithm, commonly known as k-NN, is a non-parametric approach where the response of a data point is determined by the nature of it k neighbors from the training set. It can be used in both classification and regression settings.

Remark: the higher the parameter k, the higher the bias, and the lower the parameter k, the higher the variance.
\square Neural networks - Neural networks are a class of models that are built with layers. Com monly used types of neural networks include convolutional and recurrent neural networks. The vocabulary around neural networks architectures is described in the figure below:

Input layer

Hidden layer $k \quad$ Output layer

By noting i the $i^{\text {th }}$ layer of the network and j the $j^{t h}$ hidden unit of the layer, we have:

$$
z_{j}^{[i]}=w_{j}^{[i]^{T}} x+b_{j}^{[i]}
$$

where we note w, b, x, z the weight, bias, input and non-activated output of the neuron respectively.

1.4 Stochastic gradient descent

\square Gradient descent - By noting $\eta \in \mathbb{R}$ the learning rate (also called step size), the update rule for gradient descent is expressed with the learning rate and the loss function $\operatorname{Loss}(x, y, w)$ as follows:
$w \longleftarrow w-\eta \nabla_{w} \operatorname{Loss}(x, y, w)$

$-\eta \nabla_{w} \operatorname{Loss}(x, y, w)$

\square Stochastic updates - Stochastic gradient descent (SGD) updates the parameters of the model one training example $(\phi(x), y) \in \mathcal{D}_{\text {train }}$ at a time. This method leads to sometimes noisy but fast updates
\square Batch updates - Batch gradient descent (BGD) updates the parameters of the model one batch of examples (e.g. the entire training set) at a time. This method computes stable update directions, at a greater computational cost

1.5 Fine-tuning models

\square Hypothesis class - A hypothesis class \mathcal{F} is the set of possible predictors with a fixed $\phi(x)$ and varying w :

$$
\mathcal{F}=\left\{f_{w}: w \in \mathbb{R}^{d}\right\}
$$

\square Logistic function - The logistic function σ, also called the sigmoid function, is defined as:

$$
\forall z \in]-\infty,+\infty\left[, \quad \sigma(z)=\frac{1}{1+e^{-z}}\right.
$$

Remark: we have $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
\square Backpropagation - The forward pass is done through f_{i}, which is the value for the subexpression rooted at i, while the backward pass is done through $g_{i}=\frac{\partial \text { out }}{\partial f_{i}}$ and represents how f_{i} influences the output.

\square Approximation and estimation error - The approximation error $\epsilon_{\text {approx }}$ represents how far the entire hypothesis class \mathcal{F} is from the target predictor g^{*}, while the estimation error $\epsilon_{\text {est }}$ quantifies how good the predictor \hat{f} is with respect to the best predictor f^{*} of the hypothesis class \mathcal{F}.

\square Regularization - The regularization procedure aims at avoiding the model to overfit the data and thus deals with high variance issues. The following table sums up the different types of commonly used regularization techniques:

LASSO	Ridge	Elastic Net
- Shrinks coefficients to 0 - Good for variable selection	Makes coefficients smaller	Tradeoff between variable selection and small coefficients

\square Hyperparameters - Hyperparameters are the properties of the learning algorithm, and include features, regularization parameter λ, number of iterations T, step size η, etc.
\square Sets vocabulary - When selecting a model, we distinguish 3 different parts of the data that we have as follows:

Training set	Validation set	Testing set
- Model is trained	- Model is assessed	- Model gives predictions
- Usually 80 of the dataset	- Usually 20 of the dataset - Also called hold-out	- Unseen data or development set

Once the model has been chosen, it is trained on the entire dataset and tested on the unseen test set. These are represented in the figure below:

1.6 Unsupervised Learning

The class of unsupervised learning methods aims at discovering the structure of the data, which may have of rich latent structures.

1.6.1 k-means

\square Clustering - Given a training set of input points $\mathcal{D}_{\text {train }}$, the goal of a clustering algorithm is to assign each point $\phi\left(x_{i}\right)$ to a cluster $z_{i} \in\{1, \ldots, k\}$.
\square Objective function - The loss function for one of the main clustering algorithms, k-means, is given by:

$$
\operatorname{Loss}_{\mathrm{k}-\text { means }}(x, \mu)=\sum_{i=1}^{n}\left\|\phi\left(x_{i}\right)-\mu_{z_{i}}\right\|^{2}
$$

\square Algorithm - After randomly initializing the cluster centroids $\mu_{1}, \mu_{2}, \ldots, \mu_{k} \in \mathbb{R}^{n}$, the k-means algorithm repeats the following step until convergence:

$$
z_{i=1}^{\arg \min \left\|\phi\left(x_{i}\right)-\mu_{j}\right\|^{2}} \text { and } \mu_{j}=\frac{\sum_{i=1}^{m} 1_{\left\{z_{i}=j\right\}} \phi\left(x_{i}\right)}{\sum_{i=1}^{m} 1_{\left\{z_{i}=j\right\}}}
$$

1.6.2 Principal Component Analysis
\square Eigenvalue, eigenvector - Given a matrix $A \in \mathbb{R}^{n \times n}, \lambda$ is said to be an eigenvalue of A if there exists a vector $z \in \mathbb{R}^{n} \backslash\{0\}$, called eigenvector, such that we have:

$$
A z=\lambda z
$$

\square Spectral theorem - Let $A \in \mathbb{R}^{n \times n}$. If A is symmetric, then A is diagonalizable by a rea orthogonal matrix $U \in \mathbb{R}^{n \times n}$. By noting $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, we have

$$
\exists \Lambda \text { diagonal, } \quad A=U \Lambda U^{T}
$$

Remark: the eigenvector associated with the largest eigenvalue is called principal eigenvector of matrix A.
\square Algorithm - The Principal Component Analysis (PCA) procedure is a dimension reduction technique that projects the data on k dimensions by maximizing the variance of the data as follows:

- Step 1: Normalize the data to have a mean of 0 and standard deviation of 1.

$$
x_{j}^{(i)} \leftarrow \frac{x_{j}^{(i)}-\mu_{j}}{\sigma_{j}} \text { where } \mu_{j}=\frac{1}{m} \sum_{i=1}^{m} x_{j}^{(i)} \text { and } \sigma_{j}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(x_{j}^{(i)}-\mu_{j}\right)^{2}
$$

- Step 2: Compute $\Sigma=\frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)^{T}} \in \mathbb{R}^{n \times n}$, which is symmetric with real eigenvalues.
- Step 3: Compute $u_{1}, \ldots, u_{k} \in \mathbb{R}^{n}$ the k orthogonal principal eigenvectors of Σ, i.e. the orthogonal eigenvectors of the k largest eigenvalues.
- Step 4: Project the data on $\operatorname{span}_{\mathbb{R}}\left(u_{1}, \ldots, u_{k}\right)$. This procedure maximizes the variance among all k-dimensional spaces.

2 States-based models

2.1 Search optimization

In this section, we assume that by accomplishing action a from state s, we deterministically arrive in state $\operatorname{Succ}(s, a)$. The goal here is to determine a sequence of actions ($\left.a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right)$ that starts from an initial state and leads to an end state. In order to solve this kind of problem our objective will be to find the minimum cost path by using states-based models.

2.1.1 Tree search

This category of states-based algorithms explores all possible states and actions. It is quite memory efficient, and is suitable for huge state spaces but the runtime can become exponential in the worst cases.

Self-loop

(B)

(B)

Cycle

(23)
ore than a root

Valid tree
\square Search problem - A search problem is defined with:

- a starting state $s_{\text {start }}$
- possible actions Actions(s) from state s
- action cost $\operatorname{Cost}(s, a)$ from state s with action a
- $\operatorname{successor} \operatorname{Succ}(s, a)$ of state s after action a
- whether an end state was reached $\operatorname{IsEnd}(s)$

The objective is to find a path that minimizes the cost.
\square Backtracking search - Backtracking search is a naive recursive algorithm that tries all possibilities to find the minimum cost path. Here, action costs can be either positive or negative.
\square Breadth-first search (BFS) - Breadth-first search is a graph search algorithm that does a level-by-level traversal. We can implement it iteratively with the help of a queue that stores at
each step future nodes to be visited. For this algorithm, we can assume action costs to be equal to a constant $c \geqslant 0$.

\square Depth-first search (DFS) - Depth-first search is a search algorithm that traverses a graph by following each path as deep as it can. We can implement it recursively, or iteratively with the help of a stack that stores at each step future nodes to be visited. For this algorithm, action costs are assumed to be equal to 0 .

\square Iterative deepening - The iterative deepening trick is a modification of the depth-first search algorithm so that it stops after reaching a certain depth, which guarantees optimality \square Tree search algorithms summary - By noting b the number of actions per state, d the solution depth, and D the maximum depth, we have:

Algorithm	Action costs	Space	Time
Backtracking search	any	$\mathcal{O}(D)$	$\mathcal{O}\left(b^{D}\right)$
Breadth-first search	$c \geqslant 0$	$\mathcal{O}\left(b^{d}\right)$	$\mathcal{O}\left(b^{d}\right)$
Depth-first search	0	$\mathcal{O}(D)$	$\mathcal{O}\left(b^{D}\right)$
DFS-Iterative deepening	$c \geqslant 0$	$\mathcal{O}(d)$	$\mathcal{O}\left(b^{d}\right)$

2.1.2 Graph search

This category of states-based algorithms aims at constructing optimal paths, enabling exponential savings. In this section, we will focus on dynamic programming and uniform cost search.
\square Graph - A graph is comprised of a set of vertices V (also called nodes) as well as a set of edges E (also called links).

Remark: a graph is said to be acylic when there is no cycle.
\square State - A state is a summary of all past actions sufficient to choose future actions optimally.
\square Dynamic programming - Dynamic programming (DP) is a backtracking search algorithm with memoization (i.e. partial results are saved) whose goal is to find a minimum cost path from state s to an end state $s_{\text {end }}$. It can potentially have exponential savings compared to traditional graph search algorithms, and has the property to only work for acyclic graphs. For any given state s, the future cost is computed as follows:
FutureCost $(s)=\left\{\begin{array}{ll}0 & \text { min } \\ a \in \operatorname{Actions}(s)\end{array}[\operatorname{Cost}(s, a)+\operatorname{FutureCost}(\operatorname{Succ}(s, a))] \begin{array}{c|}\text { otherwise }\end{array}\right.$

Remark: the figure above illustrates a bottom-to-top approach whereas the formula provides the intuition of a top-to-bottom problem resolution.
\square Types of states - The table below presents the terminology when it comes to states in the context of uniform cost search:

State	Explanation
Explored \mathcal{E}	States for which the optimal path has already been found
Frontier \mathcal{F}	States seen for which we are still figuring out how to get there with the cheapest cost
Unexplored \mathcal{U}	States not seen yet

\square Uniform cost search - Uniform cost search (UCS) is a search algorithm that aims at finding the shortest path from a state $s_{\text {start }}$ to an end state $s_{\text {end }}$. It explores states s in increasing order of PastCost (s) and relies on the fact that all action costs are non-negative.

Remark 1: the UCS algorithm is logically equivalent to Djikstra's algorithm.
Remark 2: the algorithm would not work for a problem with negative action costs, and adding a positive constant to make them non-negative would not solve the problem since this would end up being a different problem.
\square Correctness theorem - When a state s is popped from the frontier \mathcal{F} and moved to explored set \mathcal{E}, its priority is equal to PastCost (s) which is the minimum cost path from $s_{\text {start }}$ to s
\square Graph search algorithms summary - By noting N the number of total states, n of which are explored before the end state $s_{\text {end }}$, we have:

Algorithm	Acyclicity	Costs	Time/space
Dynamic programming	yes	any	$\mathcal{O}(N)$
Uniform cost search	no	$c \geqslant 0$	$\mathcal{O}(n \log (n))$

Remark: the complexity countdown supposes the number of possible actions per state to be constant.

2.1.3 Learning costs

Suppose we are not given the values of $\operatorname{Cost}(s, a)$, we want to estimate these quantities from a training set of minimizing-cost-path sequence of actions $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$.
\square Structured perceptron - The structured perceptron is an algorithm aiming at iteratively learning the cost of each state-action pair. At each step, it:

- decreases the estimated cost of each state-action of the true minimizing path y given by the training data,
- increases the estimated cost of each state-action of the current predicted path y^{\prime} inferred from the learned weights.

Remark: there are several versions of the algorithm, one of which simplifies the problem to only learning the cost of each action a, and the other parametrizes Cost (s, a) to a feature vector of learnable weights.

2.1.4 A^{\star} search

\square Heuristic function - A heuristic is a function h over states s, where each $h(s)$ aims at estimating FutureCost(s), the cost of the path from s to $s_{\text {end }}$

\square Algorithm $-A^{*}$ is a search algorithm that aims at finding the shortest path from a state s to an end state $s_{\text {end }}$. It explores states s in increasing order of PastCost $(s)+h(s)$. It is equivalent to a uniform cost search with edge costs $\operatorname{Cost}^{\prime}(s, a)$ given by:

$$
\operatorname{Cost}^{\prime}(s, a)=\operatorname{Cost}(s, a)+h(\operatorname{Succ}(s, a))-h(s)
$$

Remark: this algorithm can be seen as a biased version of UCS exploring states estimated to be closer to the end state.
\square Consistency - A heuristic h is said to be consistent if it satisfies the two following properties

- For all states s and actions a,
$h(s) \leqslant \operatorname{Cost}(s, a)+h(\operatorname{Succ}(s, a))$

$\operatorname{Succ}(s, a)$
- The end state verifies the following:

$$
h\left(s_{\text {end }}\right)=0
$$

$$
s_{\text {end }} h\left(s_{\text {end }}\right)=0
$$

\square Correctness - If h is consistent, then A^{*} returns the minimum cost path.
\square Admissibility - A heuristic h is said to be admissible if we have:

$$
h(s) \leqslant \operatorname{FutureCost}(s)
$$

\square Theorem - Let $h(s)$ be a given heuristic. We have:

$$
h(s) \text { consistent } \Longrightarrow h(s) \text { admissible }
$$

\square Efficiency $-A^{*}$ explores all states s satisfying the following equation:

Remark: larger values of $h(s)$ is better as this equation shows it will restrict the set of states s going to be explored.

2.1.5 Relaxation

It is a framework for producing consistent heuristics. The idea is to find closed-form reduced costs by removing constraints and use them as heuristics.
\square Relaxed search problem - The relaxation of search problem P with costs Cost is noted $P_{\text {rel }}$ with costs Costrel , and satisfies the identity:

$$
\operatorname{Cost}_{\mathrm{rel}}(s, a) \leqslant \operatorname{Cost}(s, a)
$$

\square Relaxed heuristic - Given a relaxed search problem $P_{\text {rel }}$, we define the relaxed heuristic $h(s)=$ FutureCost $_{\text {rel }}(s)$ as the minimum cost path from s to an end state in the graph of costs Cost $_{\text {rel }}(s, a)$.

Consistency of relaxed heuristics - Let $P_{\text {rel }}$ be a given relaxed problem. By theorem, we have:

$$
h(s)=\text { FutureCost }_{\text {rel }}(s) \Longrightarrow h(s) \text { consistent }
$$

\square Tradeoff when choosing heuristic - We have to balance two aspects in choosing a heuristic:
 produce a closed form, easier search and independent subproblems.

- Good enough approximation: the heuristic $h(s)$ should be close to FutureCost (s) and we have thus to not remove too many constraints.
\square Max heuristic - Let $h_{1}(s), h_{2}(s)$ be two heuristics. We have the following property:

$$
h_{1}(s), h_{2}(s) \text { consistent } \Longrightarrow h(s)=\max \left\{h_{1}(s), h_{2}(s)\right\} \text { consistent }
$$

2.2 Markov decision processes

In this section, we assume that performing action a from state s can lead to several states $s_{1}^{\prime}, s_{2}^{\prime}, \ldots$ in a probabilistic manner. In order to find our way between an initial state and an end state, our objective will be to find the maximum value policy by using Markov decision processes that help us cope with randomness and uncertainty.

2.2.1 Notations

\square Definition - The objective of a Markov decision process is to maximize rewards. It is defined with:

- a starting state $s_{\text {start }}$
- possible actions Actions(s) from state s
- transition probabilities $T\left(s, a, s^{\prime}\right)$ from s to s^{\prime} with action a
- rewards Reward $\left(s, a, s^{\prime}\right)$ from s to s^{\prime} with action a
- whether an end state was reached $\operatorname{IsEnd}(s)$
- a discount factor $0 \leqslant \gamma \leqslant 1$

\square Transition probabilities - The transition probability $T\left(s, a, s^{\prime}\right)$ specifies the probability of going to state s^{\prime} after action a is taken in state s. Each $s^{\prime} \mapsto T\left(s, a, s^{\prime}\right)$ is a probability distribution, which means that:

$$
\forall s, a, \quad \sum_{s^{\prime} \in \text { States }} T\left(s, a, s^{\prime}\right)=1
$$

\square Policy - A policy π is a function that maps each state s to an action a, i.e.
$\pi: s \mapsto a$
\square Utility - The utility of a path $\left(s_{0}, \ldots, s_{k}\right)$ is the discounted sum of the rewards on that path In other words

$$
u\left(s_{0}, \ldots, s_{k}\right)=\sum_{i=1}^{k} r_{i} \gamma^{i-1}
$$

Remark: the figure above is an illustration of the case $k=4$.
$\square \mathrm{Q}$-value - The Q-value of a policy π by taking action a from state s, also noted $Q_{\pi}(s, a)$, is the expected utility of taking action a from state s and then following policy π. It is defined as follows:

$$
Q_{\pi}(s, a)=\sum_{s^{\prime} \in \text { States }} T\left(s, a, s^{\prime}\right)\left[\operatorname{Reward}\left(s, a, s^{\prime}\right)+\gamma V_{\pi}\left(s^{\prime}\right)\right]
$$

\square Value of a policy - The value of a policy π from state s, also noted $V_{\pi}(s)$, is the expected utility by following policy π from state s over random paths. It is defined as follows:

$$
V_{\pi}(s)=Q_{\pi}(s, \pi(s))
$$

Remark: $V_{\pi}(s)$ is equal to 0 if s is an end state.

2.2.2 Applications

\square Policy evaluation - Given a policy π, policy evaluation is an iterative algorithm that computes V_{π}. It is done as follows:

- Initialization: for all states s, we have

$$
V_{\pi}^{(0)}(s) \longleftarrow 0
$$

- Iteration: for t from 1 to T_{PE}, we have

$$
\forall s, \quad V_{\pi}^{(t)}(s) \longleftarrow Q_{\pi}^{(t-1)}(s, \pi(s))
$$

with

$$
Q_{\pi}^{(t-1)}(s, \pi(s))=\sum_{s^{\prime} \in \text { States }} T\left(s, \pi(s), s^{\prime}\right)\left[\operatorname{Reward}\left(s, \pi(s), s^{\prime}\right)+\gamma V_{\pi}^{(t-1)}\left(s^{\prime}\right)\right]
$$

Remark: by noting S the number of states, A the number of actions per state, S^{\prime} the number of successors and T the number of iterations, then the time complexity is of $\mathcal{O}\left(T_{P E} S S^{\prime}\right)$.
\square Optimal Q-value - The optimal Q-value $Q_{\mathrm{opt}}(s, a)$ of state s with action a is defined to be the maximum Q-value attained by any policy starting. It is computed as follows:

$$
Q_{\mathrm{opt}}(s, a)=\sum_{s^{\prime} \in \text { States }} T\left(s, a, s^{\prime}\right)\left[\operatorname{Reward}\left(s, a, s^{\prime}\right)+\gamma V_{\mathrm{opt}}\left(s^{\prime}\right)\right]
$$

\square Optimal value - The optimal value $V_{\mathrm{opt}}(s)$ of state s is defined as being the maximum value attained by any policy. It is computed as follows:

$$
V_{\mathrm{opt}}(s)=\max _{a \in \operatorname{Actions}(s)} Q_{\mathrm{opt}}(s, a)
$$

\square Optimal policy - The optimal policy π_{opt} is defined as being the policy that leads to the optimal values. It is defined by:

$$
\forall s, \quad \pi_{\mathrm{opt}}(s)=\underset{a \in \operatorname{Actions}(s)}{\operatorname{argmax}} Q_{\mathrm{opt}}(s, a)
$$

\square Value iteration - Value iteration is an algorithm that finds the optimal value $V_{\text {opt }}$ as well as the optimal policy π_{opt}. It is done as follows:

- Initialization: for all states s, we have

$$
V_{\mathrm{opt}}^{(0)}(s) \longleftarrow 0
$$

- Iteration: for t from 1 to T_{VI}, we have

$$
\forall s, \quad V_{\mathrm{opt}}^{(t)}(s) \longleftarrow \max _{a \in \operatorname{Actions}(s)} Q_{\mathrm{opt}}^{(t-1)}(s, a)
$$

with

$$
Q_{\mathrm{opt}}^{(t-1)}(s, a)=\sum_{s^{\prime} \in \text { States }} T\left(s, a, s^{\prime}\right)\left[\operatorname{Reward}\left(s, a, s^{\prime}\right)+\gamma V_{\mathrm{opt}}^{(t-1)}\left(s^{\prime}\right)\right]
$$

Remark: if we have either $\gamma<1$ or the MDP graph being acyclic, then the value iteration algorithm is guaranteed to converge to the correct answer.

2.2.3 When unknown transitions and rewards

Now, let's assume that the transition probabilities and the rewards are unknown.
\square Model-based Monte Carlo - The model-based Monte Carlo method aims at estimating $T\left(s, a, s^{\prime}\right)$ and Reward $\left(s, a, s^{\prime}\right)$ using Monte Carlo simulation with:

$$
\widehat{T}\left(s, a, s^{\prime}\right)=\frac{\# \text { times }\left(s, a, s^{\prime}\right) \text { occurs }}{\# \text { times }(s, a) \text { occurs }}
$$

and

$$
\widehat{\operatorname{Rewar}}\left(s, a, s^{\prime}\right)=r \text { in }\left(s, a, r, s^{\prime}\right)
$$

These estimations will be then used to deduce Q-values, including Q_{π} and Q_{opt}.

Remark: model-based Monte Carlo is said to be off-policy, because the estimation does not depend on the exact policy.

I Model-free Monte Carlo - The model-free Monte Carlo method aims at directly estimating Q_{π}, as follows:

$$
\widehat{Q}_{\pi}(s, a)=\text { average of } u_{t} \text { where } s_{t-1}=s, a_{t}=a
$$

where u_{t} denotes the utility starting at step t of a given episode.
Remark: model-free Monte Carlo is said to be on-policy, because the estimated value is dependent on the policy π used to generate the data.
\square Equivalent formulation - By introducing the constant $\eta=\frac{1}{1+(\# \text { updates to }(s, a))}$ and for each (s, a, u) of the training set, the update rule of model-free Monte Carlo has a convex combination formulation:

$$
\widehat{Q}_{\pi}(s, a) \leftarrow(1-\eta) \widehat{Q}_{\pi}(s, a)+\eta u
$$

as well as a stochastic gradient formulation:

$$
\widehat{Q}_{\pi}(s, a) \leftarrow \widehat{Q}_{\pi}(s, a)-\eta\left(\widehat{Q}_{\pi}(s, a)-u\right)
$$

\square SARSA - State-action-reward-state-action (SARSA) is a boostrapping method estimating Q_{π} by using both raw data and estimates as part of the update rule. For each $\left(s, a, r, s^{\prime}, a^{\prime}\right)$, we have:

$$
\widehat{Q}_{\pi}(s, a) \longleftarrow(1-\eta) \widehat{Q}_{\pi}(s, a)+\eta\left[r+\gamma \widehat{Q}_{\pi}\left(s^{\prime}, a^{\prime}\right)\right]
$$

Remark: the SARSA estimate is updated on the fly as opposed to the model-free Monte Carlo one where the estimate can only be updated at the end of the episode
\square Q-learning - Q-learning is an off-policy algorithm that produces an estimate for Q_{opt}. On each ($s, a, r, s^{\prime}, a^{\prime}$), we have:

$$
\widehat{Q}_{\mathrm{opt}}(s, a) \leftarrow(1-\eta) \widehat{Q}_{\mathrm{opt}}(s, a)+\eta\left[r+\gamma_{a^{\prime} \in \operatorname{Actions}\left(s^{\prime}\right)} \widehat{Q}_{\mathrm{opt}}\left(s^{\prime}, a^{\prime}\right)\right]
$$

\square Epsilon-greedy - The epsilon-greedy policy is an algorithm that balances exploration with probability ϵ and exploitation with probability $1-\epsilon$. For a given state s, the policy $\pi_{\text {act }}$ is computed as follows:

$$
\pi_{\mathrm{act}}(s)= \begin{cases}\underset{a \in \operatorname{Actions}}{\operatorname{argmax}} \widehat{Q}_{\mathrm{opt}}(s, a) & \text { with proba } 1-\epsilon \\ \text { random from Actions }(s) & \text { with proba } \epsilon\end{cases}
$$

2.3 Game playing

In games (e.g. chess, backgammon, Go), other agents are present and need to be taken into account when constructing our policy.
\square Game tree - A game tree is a tree that describes the possibilities of a game. In particular, each node is a decision point for a player and each root-to-leaf path is a possible outcome of the game.
\square Two-player zero-sum game - It is a game where each state is fully observed and such that players take turns. It is defined with:

- a starting state $s_{\text {start }}$
- possible actions Actions(s) from state s
- $\operatorname{successors} \operatorname{Succ}(s, a)$ from states s with actions a
- whether an end state was reached $\operatorname{IsEnd}(s)$
- the agent's utility Utility (s) at end state s
- the player $\operatorname{Player}(s)$ who controls state s

Remark: we will assume that the utility of the agent has the opposite sign of the one of the opponent.
\square Types of policies - There are two types of policies:

- Deterministic policies, noted $\pi_{p}(s)$, which are actions that player p takes in state s.
- Stochastic policies, noted $\pi_{p}(s, a) \in[0,1]$, which are probabilities that player p takes action a in state s.
\square Expectimax - For a given state s, the expectimax value $V_{\operatorname{exptmax}}(s)$ is the maximum expected utility of any agent policy when playing with respect to a fixed and known opponent policy π_{opp}. It is computed as follows:

$V_{\operatorname{exptmax}}(s)=$	$\begin{aligned} & \operatorname{\operatorname {Utility}(s)} \\ & \sum_{a \in \operatorname{Actions}(s)} V_{\operatorname{exptmax}}(\operatorname{Succ}(s, a)) \\ & \pi_{\mathrm{Actions}(s)}(s, a) V_{\operatorname{exptmax}}(\operatorname{Succ}(s, a)) \end{aligned}$	$\begin{aligned} & \operatorname{IsEnd}(s) \\ & \operatorname{Player}(s)=\operatorname{agent} \\ & \operatorname{Player}(s)=\mathrm{opp} \end{aligned}$

Remark: expectimax is the analog of value iteration for MDPs.

Minimax - The goal of minimax policies is to find an optimal policy against an adversary by assuming the worst case, i.e. that the opponent is doing everything to minimize the agent's utility. It is done as follows:

$$
V_{\text {minimax }}(s)= \begin{cases}\begin{array}{ll}
\operatorname{Utility}(s) \\
\max \\
a \in \operatorname{Actions}(s) \\
\min _{\text {minimax }}(\operatorname{Succ}(s, a)) \\
a \in \operatorname{Actions}(s)
\end{array} V_{\text {minimax }}(\operatorname{Succ}(s, a)) & \text { Player }(s)=\text { agent } \\
\text { Player }(s)=\mathrm{opp}\end{cases}
$$

Remark: we can extract $\pi_{\max }$ and $\pi_{\min }$ from the minimax value $V_{\operatorname{minimax}}$.

\square Minimax properties - By noting V the value function, there are 3 properties around minimax to have in mind:

- Property 1: if the agent were to change its policy to any $\pi_{\text {agent }}$, then the agent would be no better off.

$$
\forall \pi_{\text {agent }}, \quad V\left(\pi_{\max }, \pi_{\min }\right) \geqslant V\left(\pi_{\text {agent }}, \pi_{\min }\right)
$$

- Property 2: if the opponent changes its policy from $\pi_{\min }$ to π_{opp}, then he will be no better off

$$
\forall \pi_{\mathrm{opp}}, \quad V\left(\pi_{\max }, \pi_{\min }\right) \leqslant V\left(\pi_{\max }, \pi_{\mathrm{opp}}\right)
$$

- Property 3: if the opponent is known to be not playing the adversarial policy, then the minimax policy might not be optimal for the agent.

$$
\forall \pi, \quad V\left(\pi_{\max }, \pi\right) \leqslant V\left(\pi_{\operatorname{expt} \max }, \pi\right)
$$

In the end, we have the following relationship:

$$
V\left(\pi_{\operatorname{exptmax}}, \pi_{\min }\right) \leqslant V\left(\pi_{\max }, \pi_{\min }\right) \leqslant V\left(\pi_{\max }, \pi\right) \leqslant V\left(\pi_{\operatorname{expt} \max }, \pi\right)
$$

2.3.1 Speeding up minimax

\square Evaluation function - An evaluation function is a domain-specific and approximate estimate of the value $V_{\text {minimax }}(s)$. It is noted $\operatorname{Eval}(s)$

Remark: FutureCost(s) is an analogy for search problems.
\square Alpha-beta pruning - Alpha-beta pruning is a domain-general exact method optimizing the minimax algorithm by avoiding the unnecessary exploration of parts of the game tree. To do so, each player keeps track of the best value they can hope for (stored in α for the maximizing player and in β for the minimizing player). At a given step, the condition $\beta<\alpha$ means that the optimal path is not going to be in the current branch as the earlier player had a better option at their disposal

\square TD learning - Temporal difference (TD) learning is used when we don't know the transitions/rewards. The value is based on exploration policy. To be able to use it, we need to know rules of the game $\operatorname{Succ}(s, a)$. For each $\left(s, a, r, s^{\prime}\right)$, the update is done as follows

$$
w \longleftarrow w-\eta\left[V(s, w)-\left(r+\gamma V\left(s^{\prime}, w\right)\right)\right] \nabla_{w} V(s, w)
$$

2.3.2 Simultaneous games

This is the contrary of turn-based games, where there is no ordering on the player's moves
\square Single-move simultaneous game - Let there be two players A and B, with given possible actions. We note $V(a, b)$ to be A 's utility if A chooses action a, B chooses action b. V is called the payoff matrix.
\square Strategies - There are two main types of strategies:

- A pure strategy is a single action:

$$
a \in \text { Actions }
$$

- A mixed strategy is a probability distribution over actions:

$$
\forall a \in \text { Actions, } 0 \leqslant \pi(a) \leqslant 1
$$

\square Game evaluation - The value of the game $V\left(\pi_{A}, \pi_{B}\right)$ when player A follows π_{A} and player B follows π_{B} is such that:

$$
V\left(\pi_{A}, \pi_{B}\right)=\sum_{a, b} \pi_{A}(a) \pi_{B}(b) V(a, b)
$$

\square Minimax theorem - By noting π_{A}, π_{B} ranging over mixed strategies, for every simultaneous two-player zero-sum game with a finite number of actions, we have:

$$
\max _{\pi_{A}} \min _{\pi_{B}} V\left(\pi_{A}, \pi_{B}\right)=\min _{\pi_{B}} \max _{\pi_{A}} V\left(\pi_{A}, \pi_{B}\right)
$$

2.3.3 Non-zero-sum games

\square Payoff matrix - We define $V_{p}\left(\pi_{A}, \pi_{B}\right)$ to be the utility for player p.
\square Nash equilibrium - A Nash equilibrium is $\left(\pi_{A}^{*}, \pi_{B}^{*}\right)$ such that no player has an incentive to change its strategy. We have:

$$
\forall \pi_{A}, V_{A}\left(\pi_{A}^{*}, \pi_{B}^{*}\right) \geqslant V_{A}\left(\pi_{A}, \pi_{B}^{*}\right) \quad \text { and } \quad \forall \pi_{B}, V_{B}\left(\pi_{A}^{*}, \pi_{B}^{*}\right) \geqslant V_{B}\left(\pi_{A}^{*}, \pi_{B}\right)
$$

Remark: in any finite-player game with finite number of actions, there exists at least one Nash equilibrium.

3 Variables-based models

3.1 Constraint satisfaction problems

In this section, our objective is to find maximum weight assignments of variable-based models One advantage compared to states-based models is that these algorithms are more convenient to encode problem-specific constraints.

3.1.1 Factor graphs

\square Definition - A factor graph, also referred to as a Markov random field, is a set of variables $X=\left(X_{1}, \ldots, X_{n}\right)$ where $X_{i} \in$ Domain $_{i}$ and m factors f_{1}, \ldots, f_{m} with each $f_{j}(X) \geqslant 0$.

\checkmark Scope and arity - The scope of a factor f_{j} is the set of variables it depends on. The size of this set is called the arity.
Remark: factors of arity 1 and 2 are called unary and binary respectively.
I Assignment weight - Each assignment $x=\left(x_{1}, \ldots, x_{n}\right)$ yields a weight Weight (x) defined as being the product of all factors f_{j} applied to that assignment. Its expression is given by:

$$
\operatorname{Weight}(x)=\prod_{j=1}^{m} f_{j}(x)
$$

ᄀ Constraint satisfaction problem - A constraint satisfaction problem (CSP) is a factor graph where all factors are binary; we call them to be constraints:

$$
\forall j \in \llbracket 1, m \rrbracket, \quad f_{j}(x) \in\{0,1\}
$$

Here, the constraint j with assignment x is said to be satisfied if and only if $f_{j}(x)=1$.
\square Consistent assignment - An assignment x of a CSP is said to be consistent if and only if Weight $(x)=1$, i.e. all constraints are satisfied.

3.1.2 Dynamic ordering

D Dependent factors - The set of dependent factors of variable X_{i} with partial assignment x is called $D\left(x, X_{i}\right)$, and denotes the set of factors that link X_{i} to already assigned variables.
\square Backtracking search - Backtracking search is an algorithm used to find maximum weigh assignments of a factor graph. At each step, it chooses an unassigned variable and explore its values by recursion. Dynamic ordering (i.e. choice of variables and values) and lookahead (i.e. early elimination of inconsistent options) can be used to explore the graph more efficiently, although the worst-case runtime stays exponential: O (|Domain $\left.\left.\right|^{n}\right)$.
\square Forward checking - It is a one-step lookahead heuristic that preemptively removes inconsistent values from the domains of neighboring variables. It has the following characteristics:

- After assigning a variable X_{i}, it eliminates inconsistent values from the domains of all it neighbors.
- If any of these domains becomes empty, we stop the local backtracking search.
- If we un-assign a variable X_{i}, we have to restore the domain of its neighbors
\square Most constrained variable - It is a variable-level ordering heuristic that selects the next unassigned variable that has the fewest consistent values. This has the effect of making inconsistent assignments to fail earlier in the search, which enables more efficient pruning.
\square Least constrained value - It is a value-level ordering heuristic that assigns the next value that yields the highest number of consistent values of neighboring variables. Intuitively, this procedure chooses first the values that are most likely to work.
Remark: in practice, this heuristic is useful when all factors are constraints.

The example above is an illustration of the 3-color problem with backtracking search coupled with most constrained variable exploration and least constrained value heuristic, as well as forward checking at each step.
\square Arc consistency - We say that arc consistency of variable X_{l} with respect to X_{k} is enforced when for each $x_{l} \in$ Domain $_{l}$:

- unary factors of X_{l} are non-zero,
- there exists at least one $x_{k} \in$ Domain $_{k}$ such that any factor between X_{l} and X_{k} is non-zero.
\square AC-3 - The AC-3 algorithm is a multi-step lookahead heuristic that applies forward checking to all relevant variables. After a given assignment, it performs forward checking and then successively enforces arc consistency with respect to the neighbors of variables for which the domain change during the process.
Remark: AC-3 can be implemented both iteratively and recursively.

3.1.3 Approximate methods

\square Beam search - Beam search is an approximate algorithm that extends partial assignments of n variables of branching factor $b=\mid$ Domain \mid by exploring the K top paths at each step. The beam size $K \in\left\{1, \ldots, b^{n}\right\}$ controls the tradeoff between efficiency and accuracy. This algorithm has a time complexity of $O(n \cdot K b \log (K b))$
The example below illustrates a possible beam search of parameters $K=2, b=3$ and $n=5$

Remark: $K=1$ corresponds to greedy search whereas $K \rightarrow+\infty$ is equivalent to BFS tree search.
\square Iterated conditional modes - Iterated conditional modes (ICM) is an iterative approximate algorithm that modifies the assignment of a factor graph one variable at a time until convergence At step i, we assign to X_{i} the value v that maximizes the product of all factors connected to that variable.
Remark: ICM may get stuck in local minima.
\square Gibbs sampling - Gibbs sampling is an iterative approximate method that modifies the assignment of a factor graph one variable at a time until convergence. At step i :

- we assign to each element $u \in \operatorname{Domain}_{i}$ a weight $w(u)$ that is the product of all factors connected to that variable,
- we sample v from the probability distribution induced by w and assign it to X_{i}

Remark: Gibbs sampling can be seen as the probabilistic counterpart of ICM. It has the advantage to be able to escape local minima in most cases.

3.1.4 Factor graph transformations

\square Independence - Let A, B be a partitioning of the variables X. We say that A and B are independent if there are no edges between A and B and we write:
A, B independent $\Longleftrightarrow A \Perp B$
Remark: independence is the key property that allows us to solve subproblems in parallel.
\square Conditional independence - We say that A and B are conditionally independent given C if conditioning on C produces a graph in which A and B are independent. In this case, it is written:

$$
A \text { and } B \text { cond. indep. given } C \Longleftrightarrow A \Perp B \mid C
$$

\square Conditioning - Conditioning is a transformation aiming at making variables independent that breaks up a factor graph into smaller pieces that can be solved in parallel and can use backtracking. In order to condition on a variable $X_{i}=v$, we do as follows:

- Consider all factors f_{1}, \ldots, f_{k} that depend on X_{i}
- Remove X_{i} and f_{1}, \ldots, f_{k}
- Add $g_{j}(x)$ for $j \in\{1, \ldots, k\}$ defined as:

$$
g_{j}(x)=f_{j}\left(x \cup\left\{X_{i}: v\right\}\right)
$$

\square Markov blanket - Let $A \subseteq X$ be a subset of variables. We define MarkovBlanket (A) to be the neighbors of A that are not in A.
\square Proposition - Let $C=$ MarkovBlanket (A) and $B=X \backslash(A \cup C)$. Then we have:
$A \Perp B \mid C$

\square Elimination - Elimination is a factor graph transformation that removes X_{i} from the graph and solves a small subproblem conditioned on its Markov blanket as follows:

- Consider all factors $f_{i, 1}, \ldots, f_{i, k}$ that depend on X_{i}
- Remove X_{i} and $f_{i, 1}, \ldots, f_{i, k}$
- Add $f_{\text {new }, i}(x)$ defined as:

$$
f_{\text {new }, i}(x)=\max _{x_{i}} \prod_{l=1}^{k} f_{i, l}(x)
$$

Treewidth - The treewidth of a factor graph is the maximum arity of any factor created by variable elimination with the best variable ordering. In other words,

$$
\text { Treewidth }=\min _{\text {orderings }} \max _{i \in\{1, \ldots, n\}} \operatorname{arity}\left(f_{\text {new }, i}\right)
$$

The example below illustrates the case of a factor graph of treewidth 3 .

Remark: finding the best variable ordering is a NP-hard problem

3.2 Bayesian networks

n this section, our goal will be to compute conditional probabilities. What is the probability of query given evidence?

3.2.1 Introduction

\square Explaining away - Suppose causes C_{1} and C_{2} influence an effect E. Conditioning on the effect E and on one of the causes (say C_{1}) changes the probability of the other cause (say C_{2}). In this case, we say that C_{1} has explained away C_{2}.

I Directed acyclic graph - A directed acyclic graph (DAG) is a finite directed graph with no directed cycles.

I Bayesian network - A Bayesian network is a directed acyclic graph (DAG) that specifies a joint distribution over random variables $X=\left(X_{1}, \ldots, X_{n}\right)$ as a product of local conditional distributions, one for each node:

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \triangleq \prod_{i=1}^{n} p\left(x_{i} \mid x_{\operatorname{Parents}(i)}\right)
$$

Remark: Bayesian networks are factor graphs imbued with the language of probability.

\square Locally normalized - For each $x_{\text {Parents }(i)}$, all factors are local conditional distributions. Hence they have to satisfy:

$$
\sum_{x_{i}} p\left(x_{i} \mid x_{\text {Parents }(i)}\right)=1
$$

As a result, sub-Bayesian networks and conditional distributions are consistent
Remark: local conditional distributions are the true conditional distributions
\square Marginalization - The marginalization of a leaf node yields a Bayesian network without that node.

3.2.2 Probabilistic programs

\square Concept - A probabilistic program randomizes variables assignment. That way, we can write down complex Bayesian networks that generate assignments without us having to explicitly specify associated probabilities.

Remark: examples of probabilistic programs include Hidden Markov model (HMM), factorial HMM, naive Bayes, latent Dirichlet allocation, diseases and symptoms and stochastic block models
\square Summary - The table below summarizes the common probabilistic programs as well as their applications:

Program	Algorithm	Illustration	Example
Markov Model	$X_{i} \sim p\left(X_{i} \mid X_{i-1}\right)$	$X_{1}-X_{2}-X_{3} \rightarrow \ldots-X_{n}$	Language modeling
Hidden Markov Model (HMM)	$\begin{aligned} & H_{t} \sim p\left(H_{t} \mid H_{t-1}\right) \\ & E_{t} \sim p\left(E_{t} \mid H_{t}\right) \end{aligned}$	$\begin{gathered} H_{1}-H_{2}-H_{3} \rightarrow \cdots-H_{T} \\ \vdots \\ E_{1}-E_{2}-E_{3} \\ -\ldots-E_{T} \end{gathered}$	Object tracking

Factorial HMM	$\begin{aligned} & H_{t}^{o} \underset{o \in\{a, b\}}{\sim} p\left(H_{t}^{o} \mid H_{t-1}^{o}\right) \\ & E_{t} \sim p\left(E_{t} \mid H_{t}^{a}, H_{t}^{b}\right) \end{aligned}$		Multiple object tracking
Naive Bayes	$\begin{aligned} & Y \sim p(Y) \\ & W_{i} \sim p\left(W_{i} \mid Y\right) \end{aligned}$		Document classification
Latent Dirichlet Allocation (LDA)	$\begin{aligned} & \alpha \in \mathbb{R}^{K} \text { distribution } \\ & Z_{i} \sim p\left(Z_{i} \mid \alpha\right) \\ & W_{i} \sim p\left(W_{i} \mid Z_{i}\right) \end{aligned}$		Topic modeling

3.2.3 Inference

\square General probabilistic inference strategy - The strategy to compute the probability $P(Q \mid E=e)$ of query Q given evidence $E=e$ is as follows:

- Step 1: Remove variables that are not ancestors of the query Q or the evidence E by marginalization
- Step 2: Convert Bayesian network to factor graph
- Step 3: Condition on the evidence $E=e$
- Step 4: Remove nodes disconnected from the query Q by marginalization
- Step 5: Run probabilistic inference algorithm (manual, variable elimination, Gibbs sampling, particle filtering)
\square Forward-backward algorithm - This algorithm computes the exact value of $P\left(H=h_{k} \mid E=\right.$ $e)$ (smoothing query) for any $k \in\{1, \ldots, L\}$ in the case of an HMM of size L. To do so, we proceed in 3 steps:
- Step 1: for $i \in\{1, \ldots, L\}$, compute $F_{i}\left(h_{i}\right)=\sum_{h_{i-1}} F_{i-1}\left(h_{i-1}\right) p\left(h_{i} \mid h_{i-1}\right) p\left(e_{i} \mid h_{i}\right)$
- Step 2: for $i \in\{L, \ldots, 1\}$, compute $B_{i}\left(h_{i}\right)=\sum_{h_{i+1}} B_{i+1}\left(h_{i+1}\right) p\left(h_{i+1} \mid h_{i}\right) p\left(e_{i+1} \mid h_{i+1}\right)$
- Step 3: for $i \in\{1, \ldots, L\}$, compute $S_{i}\left(h_{i}\right)=\frac{F_{i}\left(h_{i}\right) B_{i}\left(h_{i}\right)}{\sum_{h_{i}} F_{i}\left(h_{i}\right) B_{i}\left(h_{i}\right)}$
with the convention $F_{0}=B_{L+1}=1$. From this procedure and these notations, we get that

$$
P\left(H=h_{k} \mid E=e\right)=S_{k}\left(h_{k}\right)
$$

Remark: this algorithm interprets each assignment to be a path where each edge $h_{i-1} \rightarrow h_{i}$ is of weight $p\left(h_{i} \mid h_{i-1}\right) p\left(e_{i} \mid h_{i}\right)$.
\square Gibbs sampling - This algorithm is an iterative approximate method that uses a small set of assignments (particles) to represent a large probability distribution. From a random assignment x, Gibbs sampling performs the following steps for $i \in\{1, \ldots, n\}$ until convergence:

- For all $u \in \operatorname{Domain}_{i}$, compute the weight $w(u)$ of assignment x where $X_{i}=u$
- Sample v from the probability distribution induced by $w: v \sim P\left(X_{i}=v \mid X_{-i}=x_{-i}\right)$
- Set $X_{i}=v$

Remark: X_{-i} denotes $X \backslash\left\{X_{i}\right\}$ and x_{-i} represents the corresponding assignment.
\square Particle filtering - This algorithm approximates the posterior density of state variables given the evidence of observation variables by keeping track of K particles at a time. Starting from a set of particles C of size K, we run the following 3 steps iteratively:

- Step 1: proposal - For each old particle $x_{t-1} \in C$, sample x from the transition probability distribution $p\left(x \mid x_{t-1}\right)$ and add x to a set C^{\prime}.
- Step 2: weighting - Weigh each x of the set C^{\prime} by $w(x)=p\left(e_{t} \mid x\right)$, where e_{t} is the evidence observed at time t.
- Step 3: resampling - Sample K elements from the set C^{\prime} using the probability distribution induced by w and store them in C : these are the current particles x_{t}.

Remark: a more expensive version of this algorithm also keeps track of past particles in the proposal step.
\square Maximum likelihood - If we don't know the local conditional distributions, we can learn them using maximum likelihood.

$$
\max _{\theta} \prod_{x \in \mathcal{D}_{\text {train }}} p(X=x ; \theta)
$$

\square Laplace smoothing - For each distribution d and partial assignment ($\left.x_{\text {Parents }(i)}, x_{i}\right)$, add λ to count ${ }_{d}\left(x_{\text {Parents }(i)}, x_{i}\right)$, then normalize to get probability estimates.
\square Algorithm - The Expectation-Maximization (EM) algorithm gives an efficient method at estimating the parameter θ through maximum likelihood estimation by repeatedly constructing a lower-bound on the likelihood (E-step) and optimizing that lower bound (M-step) as follows:

- E-step: Evaluate the posterior probability $q(h)$ that each data point e came from a particular cluster h as follows:

$$
q(h)=P(H=h \mid E=e ; \theta)
$$

- M-step: Use the posterior probabilities $q(h)$ as cluster specific weights on data points e to determine θ through maximum likelihood.

4 Logic-based models

4.1 Basics

\square Syntax of propositional logic - By noting f, g formulas, and $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$ connectives, we can write the following logical expressions

Name	Symbol	Meaning	Illustration
Affirmation	f		
Negation	$\neg f$		
Conjunction	$f \wedge g$	f and g	
Disjunction	$f \vee g$	f or g	
Implication	$f \rightarrow g$		

Remark: formulas can be built up recursively out of these connectives
\square Model - A model w denotes an assignment of binary weights to propositional symbols
Example: the set of truth values $w=\{A: 0, B: 1, C: 0\}$ is one possible model to the propositional symbols A, B and C.
\square Interpretation function - The interpretation function $\mathcal{I}(f, w)$ outputs whether model w satisfies formula f :

$$
\mathcal{I}(f, w) \in\{0,1\}
$$

\square Set of models $-\mathcal{M}(f)$ denotes the set of models w that satisfy formula f. Mathematically speaking, we define it as follows:

$\forall w \in \mathcal{M}(f), \quad \mathcal{I}(f, w)=1$

4.2 Knowledge base

\square Definition - The knowledge base KB is the conjunction of all formulas that have been considered so far. The set of models of the knowledge base is the intersection of the set of models that satisfy each formula. In other words:

$$
\mathcal{M}(\mathrm{KB})=\bigcap_{f \in \mathrm{~KB}} \mathcal{M}(f)
$$

\square Probabilistic interpretation - The probability that query f is evaluated to 1 can be seen as the proportion of models w of the knowledge base KB that satisfy f, i.e.:

$$
P(f \mid \mathrm{KB})=\frac{\sum_{w \in \mathcal{M}(\mathrm{~KB}) \cap \mathcal{M}(f)} P(W=w)}{\sum_{w \in \mathcal{M}(\mathrm{~KB})} P(W=w)}
$$

\square Satisfiability - The knowledge base KB is said to be satisfiable if at least one model w satisfies all its constraints. In other words

$$
\text { KB satisfiable } \Longleftrightarrow \mathcal{M}(\mathrm{KB}) \neq \varnothing
$$

Remark: $\mathcal{M}(K B)$ denotes the set of models compatible with all the constraints of the knowledge base.
\square Relation between formulas and knowledge base - We define the following propertie between the knowledge base KB and a new formula f :

Name	Mathematical formulation	Illustration	Notes
$\begin{gathered} \text { KB } \\ \text { entails } f \end{gathered}$	$\mathcal{M}(\mathrm{KB}) \cap \mathcal{M}(f)=\mathcal{M}(\mathrm{KB})$	$\mathcal{M}(f)$	- f does not bring any new information - Also written $\mathrm{KB} \models f$
KB contradicts f	$\mathcal{M}(\mathrm{KB}) \cap \mathcal{M}(f)=\varnothing$		- No model satisfies the constraints after adding f Equivalent to $\mathrm{KB} \models \neg f$
f contingent to KB	$\begin{gathered} \mathcal{M}(\mathrm{KB}) \cap \mathcal{M}(f) \neq \varnothing \\ \text { and } \\ \mathcal{M}(\mathrm{KB}) \cap \mathcal{M}(f) \neq \mathcal{M}(\mathrm{KB}) \end{gathered}$		- f does not contradict KB - f adds a non-trivial amount of information to KB

\square Model checking - A model checking algorithm takes as input a knowledge base KB and outputs whether it is satisfiable or not

Remark: popular model checking algorithms include DPLL and WalkSat.
\square Inference rule - An inference rule of premises f_{1}, \ldots, f_{k} and conclusion g is written:

$$
\frac{f_{1}, \ldots, f_{k}}{q}
$$

\square Forward inference algorithm - From a set of inference rules Rules, this algorithm goes through all possible f_{1}, \ldots, f_{k} and adds g to the knowledge base KB if a matching rule exists This process is repeated until no more additions can be made to KB
\square Derivation - We say that KB derives f (written KB $\vdash f$) with rules Rules if f already is in KB or gets added during the forward inference algorithm using the set of rules Rules.
\square Properties of inference rules - A set of inference rules Rules can have the following properties:

Name	Mathematical formulation	Notes
Soundness $\{f: \mathrm{KB} \vdash f\} \subseteq\{f: \mathrm{KB} \models f\}$	- Inferred formulas are entailed by KB	
Completeness	$\{f: \mathrm{KB} \vdash f\} \supseteq\{f: \mathrm{KB} \models f\}$	- "Non be checked one rule at a time -
	- Formulas entailing KB are either already in the knowledge base or inferred from it $-" T h e ~ w h o l e ~ t r u t h " ~$	

4.3 Propositional logic

In this section, we will go through logic-based models that use logical formulas and inference rules. The idea here is to balance expressivity and computational efficiency.
\checkmark Horn clause - By noting p_{1}, \ldots, p_{k} and q propositional symbols, a Horn clause has the form:

$$
\left(p_{1} \wedge \ldots \wedge p_{k}\right) \longrightarrow q
$$

Remark: when $q=$ false, it is called a "goal clause", otherwise we denote it as a "definite clause".
\square Modus ponens inference rule - For propositional symbols f_{1}, \ldots, f_{k} and p, the modus ponens rule is written

$$
\frac{f_{1}, \ldots, f_{k}, \quad\left(f_{1} \wedge \ldots \wedge f_{k}\right) \longrightarrow p}{p}
$$

Remark: it takes linear time to apply this rule, as each application generate a clause that contains a single propositional symbol.
\square Completeness - Modus ponens is complete with respect to Horn clauses if we suppose that KB contains only Horn clauses and p is an entailed propositional symbol. Applying modus ponens will then derive p.
\square Conjunctive normal form - A conjunctive normal form (CNF) formula is a conjunction of clauses, where each clause is a disjunction of atomic formulas.
Remark: in other words, CNFs are \wedge of \vee.
\checkmark Equivalent representation - Every formula in propositional logic can be written into an equivalent CNF formula. The table below presents general conversion properties:

Rule name		Initial	Converted
Eliminate	\leftrightarrow	$f \leftrightarrow g$	$(f \rightarrow g) \wedge(g \rightarrow f)$
	\rightarrow	$f \rightarrow g$	$\neg f \vee g$
	$\neg \neg$	$\neg \neg f$	f
	\neg over \wedge	$\neg(f \wedge g)$	$\neg f \vee \neg g$
	\neg over \vee	$\neg(f \vee g)$	$\neg f \wedge \neg g$
	\vee over \wedge	$f \vee(g \wedge h)$	$(f \vee g) \wedge(f \vee h)$

\square Resolution inference rule - For propositional symbols f_{1}, \ldots, f_{n}, and g_{1}, \ldots, g_{m} as well as p, the resolution rule is written:

$$
\frac{f_{1} \vee \ldots \vee f_{n} \vee p, \quad \neg p \vee g_{1} \vee \ldots \vee g_{m}}{f_{1} \vee \ldots \vee f_{n} \vee g_{1} \vee \ldots \vee g_{m}}
$$

Remark: it can take exponential time to apply this rule, as each application generates a clause that has a subset of the propositional symbols
\square Resolution-based inference - The resolution-based inference algorithm follows the following steps:

- Step 1: Convert all formulas into CNF
- Step 2: Repeatedly apply resolution rule
- Step 3: Return unsatisfiable if and only if False is derived

4.4 First-order logic

The idea here is that variables yield compact knowledge representations
\square Model - A model w in first-order logic maps:

- constant symbols to objects
- predicate symbols to tuple of objects
\square Horn clause - By noting x_{1}, \ldots, x_{n} variables and a_{1}, \ldots, a_{k}, b atomic formulas, the first-order logic version of a horn clause has the form:

$$
\forall x_{1}, \ldots, \forall x_{n}, \quad\left(a_{1} \wedge \ldots \wedge a_{k}\right) \rightarrow b
$$

\square Substitution -A substitution θ maps variables to terms and $\operatorname{Subst}(\theta, f)$ denotes the result of substitution θ on f.
\square Unification - Unification takes two formulas f and g and returns the most general substitution θ that makes them equal:

$$
\operatorname{Unify}[f, g]=\theta
$$

s.t.
$\operatorname{Subst}[\theta, f]=\operatorname{Subst}[\theta, g]$

Note: Unify $[f, g]$ returns Fail if no such θ exists.
\square Modus ponens - By noting x_{1}, \ldots, x_{n} variables, a_{1}, \ldots, a_{k} and $a_{1}^{\prime}, \ldots, a_{k}^{\prime}$ atomic formulas and by calling $\theta=\operatorname{Unify}\left(a_{1}^{\prime} \wedge \ldots \wedge a_{k}^{\prime}, a_{1} \wedge \ldots \wedge a_{k}\right)$ the first-order logic version of modus ponens can be written:

$$
\begin{gathered}
\hline a_{1}^{\prime}, \ldots, a_{k}^{\prime} \quad \forall x_{1}, \ldots, \forall x_{n}\left(a_{1} \wedge \ldots \wedge a_{k}\right) \rightarrow b \\
\operatorname{Subst}[\theta, b]
\end{gathered}
$$

\square Completeness - Modus ponens is complete for first-order logic with only Horn clauses.
\square Resolution rule - By noting $f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{m}, p, q$ formulas and by calling $\theta=\operatorname{Unify}(p, q)$, the first-order logic version of the resolution rule can be written:

$$
\frac{f_{1} \vee \ldots \vee f_{n} \vee p, \quad \neg q \vee g_{1} \vee \ldots \vee g_{m}}{\operatorname{Subst}\left[\theta, f_{1} \vee \ldots \vee f_{n} \vee g_{1} \vee \ldots \vee g_{m}\right]}
$$

\square Semi-decidability - First-order logic, even restricted to only Horn clauses, is semi-decidable.

- if $\mathrm{KB} \models f$, forward inference on complete inference rules will prove f in finite time
- if $\mathrm{KB} \not \vDash f$, no algorithm can show this in finite time

Machine Learning Interview Cheat sheets

Aqeel Anwar

Last Updated: March 2021

This document contains cheat sheets on various topics asked during a Machine Learning/Data science interview. This document is constantly updated to include more topics.

Click here to get the updated version

Table of Contents

Basics of Machine Learning 2

1. Bias-Variance Trade-off 2
2. Imbalanced Data in Classification 3
3. Principal Component Analysis 4
4. Bayes' Theorem and Classifier 5
5. Regression Analysis 6
6. Regularization in ML 7
7. Convolutional Neural Network 8
8. Famous CNNs 9
9. Ensemble Methods in Machine Learning 10
Behavioral Interview 11
10. How to prepare for behavioral interview? 11
11. How to answer a behavioral question? 12

Cheat Sheet - Bias-Variance Tradeoff

What is Bias?

- Error between average model prediction and ground truth
- The bias of the estimated function tells us the capacity of the underlying model to
predict the values

What is Variance?

- Average variability in the model prediction for the given dataset
- The variance of the estimated function tells you how much the function can adjust
to the change in the dataset
High Bias
\longrightarrow Overly-simplified Model

High Variance \longrightarrow Overly-complex Model
\longrightarrow Over-fitting
\longrightarrow Low error on train data and high on test
\longrightarrow Starts modelling the noise in the input

Bias variance Trade-off

$$
\text { bias }=\mathbb{E}\left[f^{\prime}(x)\right]-f(x)
$$

Overly-simplified Model
Under-fiting
High error on both test and train data

\longrightarrow

Low Bias
High Bias

- Increasing bias reduces variance and vice-versa
- Error $=$ bias $^{2}+$ variance + irreducible error
- The best model is where the error is reduced.
- Compromise between bias and variance

Source: https://www.cheatsheets.aqeel-anwar.com

Cheat Sheet - Imbalanced Data in Classification

Classifier that always predicts label blue yields prediction accuracy of 90%
Accuracy doesn't always give the correct insight about your trained model

Accuracy: \%age correct prediction
Precision: Exactness of model
Recall: Completeness of model F1 Score: Combines Precision/Recall

Correct prediction over total predictions
From the detected cats, how many were actually cats
Correctly detected cats over total cats
Harmonic mean of Precision and Recall

One value for entire network Each class/label has a value

Each class/label has a value Each class/label has a value

Performance metrics associated with Class 1

(Is your prediction correct?) (What did you predict)

$$
\begin{aligned}
& \text { Precision }=\frac{\pi P}{\pi P+\mathbb{F P}} \\
& \text { F1 score }=2 \mathrm{x} \frac{(\text { Prec } \times \text { Rec })}{(\text { Prec }+ \text { Rec })} \\
& \begin{array}{c}
\text { False + ve rate }=\frac{\mathrm{FP}}{\mathrm{TN}+\mathrm{FP}} \\
\text { Accuracy }=\frac{\mathrm{TP}+\mathrm{TN}}{\pi P+\mathrm{NN}+\mathrm{FP}+\mathrm{TN}}
\end{array}
\end{aligned}
$$

$$
\text { Specificity }=\frac{\mathrm{TN}}{\mathrm{TN}+\mathrm{FP}}
$$

Possible solutions

1. Data Replication: Replicate the available data until the number of samples are comparable
2. Synthetic Data: Images: Rotate, dilate, crop, add noise to existing input images and create new data
3. Modified Loss: Modify the loss to reflect greater error when misclassifying smaller sample set

Blue: Label 1
Green: Label 0
Blue: Label 1 Green: Label 0

$$
\text { loss }=a * \text { loss }_{\text {green }}+b * \text { loss }_{\text {blue }} \quad a>b
$$

4. Change the algorithm: Increase the model/algorithm complexity so that the two classes are perfectly separable (Con: Overfitting)

No straight line ($\mathrm{y}=\mathrm{ax}$) passing through origin can perfectly separate data. Best solution: line $\mathrm{y}=0$, predict all labels blue

Straight line $(\mathrm{y}=\mathrm{ax}+\mathbf{b})$ can perfectly separate data. Green class will no longer be predicted as blue

Cheat Sheet - PCA Dimensionality Reduction

What is PCA?

- Based on the dataset find a new set of orthogonal feature vectors in such a way that the data spread is maximum in the direction of the feature vector (or dimension)
- Rates the feature vector in the decreasing order of data spread (or variance)
- The datapoints have maximum variance in the first feature vector, and minimum variance in the last feature vector
- The variance of the datapoints in the direction of feature vector can be termed as a measure of information in that direction.

Steps

1. Standardize the datapoints

$$
\begin{array}{r}
X_{\text {new }}=\frac{X-\operatorname{mean}(X)}{\operatorname{std}(X)} \\
C[i, j]=\operatorname{cov}\left(x_{i}, x_{j}\right) \\
C=V \Sigma V^{-1} \\
\text { atrix } \quad \\
\Sigma_{\text {sort }}=\operatorname{sort}(\Sigma) V_{\text {sort }}=\operatorname{sort}\left(V, \Sigma_{\text {sort }}\right)
\end{array}
$$

2. Find the covariance matrix from the given datapoints
3. Carry out eigen-value decomposition of the covariance matrix
4. Sort the eigenvalues and eigenvectors

Dimensionality Reduction with PCA

- Keep the first m out of n feature vectors rated by PCA. These m vectors will be the best m vectors preserving the maximum information that could have been preserved with m vectors on the given dataset

Steps:

1. Carry out steps 1-4 from above
2. Keep first m feature vectors from the sorted eigenvector matrix $\quad V_{\text {reduced }}=V[:, 0: m]$
3. Transform the data for the new basis (feature vectors) $\quad X_{\text {reduced }}=X_{\text {new }} \times V_{\text {reduced }}$
4. The importance of the feature vector is proportional to the magnitude of the eigen value

Figure 1

Figure 3

Figure 2

Figure 1: Datapoints with feature vectors as x and y -axis
Figure 2: The cartesian coordinate system is rotated to maximize the standard deviation along any one axis (new feature \# 2)
Figure 3: Remove the feature vector with minimum standard deviation of datapoints (new feature \# 1) and project the data on new feature $\# 2$

Source: https://www.cheatsheets.aqeel-anwar.com

Cheat Sheet - Bayes Theorem and Classifier

What is Bayes' Theorem?

- Describes the probability of an event, based on prior knowledge of conditions that might be related to the event.

$$
P(A \mid B)=\frac{P(B \mid A)(\text { likelihood }) \times P(A)(\text { prior })}{P(B)(\text { prior })}
$$

- How the probability of an event changes when we have knowledge of another event

$$
\mathrm{P}(\mathrm{~A}) \longrightarrow \mathrm{P}(\mathrm{~A} \mid \mathrm{B})
$$

Usually a better estimate than $\mathrm{P}(\mathrm{A})$

Example

- Probability of fire $\mathrm{P}(\mathrm{F})=1 \%$
- Probability of smoke $\mathrm{P}(\mathrm{S})=10 \%$
- Prob of smoke given there is a fire $\mathrm{P}(\mathrm{S} \mid \mathrm{F})=90 \%$
- What is the probability that there is a fire given we see a smoke $\mathrm{P}(\mathrm{F} \mid \mathrm{S})$?

$$
P(F \mid S)=\frac{P(S \mid F) \times P(F)}{P(S)}=\frac{0.9 \times 0.01}{0.1}=9 \%
$$

Maximum Aposteriori Probability (MAP) Estimation

The MAP estimate of the random variable y , given that we have observed iid ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots$), is given by. We try to accommodate our prior knowledge when estimating.

$$
\hat{y}_{M A P}=\operatorname{argmax}_{y} P(y) \prod_{i} P\left(x_{i} \mid y\right) \quad \begin{aligned}
& \text { y that maximizes the product of } \\
& \text { prior and likelihood }
\end{aligned}
$$

Maximum Likelihood Estimation (MLE)

The MAP estimate of the random variable y , given that we have observed iid ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots$), is given by. We assume we don't have any prior knowledge of the quantity being estimated.

$$
\begin{array}{ll}
\hat{y}_{M L E}=\operatorname{argmax}_{y} \prod_{i} P\left(x_{i} \mid y\right) & \begin{array}{l}
\mathrm{y} \text { that maximizes only the } \\
\text { likelihood }
\end{array}
\end{array}
$$

MLE is a special case of MAP where our prior is uniform (all values are equally likely)

Naïve Bayes' Classifier (Instantiation of MAP as classifier)

Suppose we have two classes, $\mathrm{y}=\mathrm{y}_{1}$ and $\mathrm{y}=\mathrm{y}_{2}$. Say we have more than one evidence/features $\left(\mathrm{x}_{1}\right.$, $\mathrm{x}_{2}, \mathrm{x}_{3}, \ldots$), using Bayes' theorem

$$
P\left(y \mid x_{1}, x_{2}, x_{3}, \ldots\right)=\frac{P\left(x_{1}, x_{2}, x_{3}, \ldots \mid y\right) \times P(y)}{P\left(x_{1}, x_{2}, x_{3}, \ldots\right)}
$$

Bayes' theorem assumes the features $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots\right)$ are i.i.d. i.e $P\left(x_{1}, x_{2}, x_{3}, \ldots \mid y\right)=\prod P\left(x_{i} \mid y\right)$

$$
\begin{aligned}
& P\left(y \mid x_{1}, x_{2}, x_{3}, \ldots\right)=\prod_{i} P\left(x_{i} \mid y\right) \frac{P(y)}{P\left(x_{1}, x_{2}, x_{3}, \ldots\right)} \\
& \hat{y}=y_{1} \text { if } \frac{P\left(y_{1} \mid x_{1}, x_{2}, x_{3}, \ldots\right)}{P\left(y_{2} \mid x_{1}, x_{2}, x_{3}, \ldots\right)}>1 \text { else } \hat{y}=y_{2}
\end{aligned}
$$

Source: https://www.cheatsheets.aqeel-anwar.com

Cheat Sheet - Regression Analysis

What is Regression Analysis?

Fitting a function $\mathrm{f}($.$) to datapoints \mathrm{y}_{\mathrm{i}}=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$ under some error function. Based on the estimated function and error, we have the following types of regression

1. Linear Regression:

Fits a line minimizing the sum of mean-squared error for each datapoint.

2. Polynomial Regression:

Fits a polynomial of order k ($\mathrm{k}+1$ unknowns) minimizing the sum of mean-squared error for each datapoint.

$$
\begin{array}{r}
\min _{\beta} \sum_{i}\left\|y_{i}-f_{\beta}^{\text {linear }}\left(x_{i}\right)\right\|^{2} \\
f_{\beta}^{\text {linear }}\left(x_{i}\right)=\beta_{0}+\beta_{1} x_{i} \\
\min _{\beta} \sum_{i=0}^{m}\left\|y_{i}-f_{\beta}^{\text {poly }}\left(x_{i}\right)\right\|^{2} \\
f_{\beta}^{\text {poly }}\left(x_{i}\right)=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\ldots+\beta_{k} x_{i}^{k}
\end{array}
$$

. Bayesian Regression:
For each datapoint, fits a gaussian distribution by minimizing the mean-squared error. As the number of

$$
\text { data points } x_{i} \text { increases, it converges to point }
$$

$$
\text { estimates i.e. } n \rightarrow \infty, \sigma^{2} \rightarrow 0
$$

4. Ridge Regression:

Can fit either a line, or polynomial minimizing the sum of mean-squared error for each datapoint and the weighted L2 norm of the function parameters beta.

$$
\begin{array}{r}
\min _{\beta} \sum_{i=0}^{m}\left\|y_{i}-f_{\beta}\left(x_{i}\right)\right\|^{2}+\sum_{j=0}^{k} \beta_{j}^{2} \\
f_{\beta}\left(x_{i}\right)=f_{\beta}^{\text {poly }}\left(x_{i}\right) \text { or } f_{\beta}^{\text {linear }}\left(x_{i}\right)
\end{array}
$$

5. LASSO Regression:

Can fit either a line, or polynomial minimizing the the sum of mean-squared error for each datapoint and the weighted L1 norm of the function parameters beta.

$$
\begin{gathered}
\min _{\beta} \sum_{i}\left\|y_{i}-\mathcal{N}\left(f_{\beta}\left(x_{i}\right), \sigma^{2}\right)\right\|^{2} \\
f_{\beta}\left(x_{i}\right) \stackrel{i}{=} f_{\beta}^{\text {poly }}\left(x_{i}\right) \text { or } f_{\beta}^{\text {linear }}\left(x_{i}\right)
\end{gathered}
$$

estimates i.e. $n \rightarrow \infty, \sigma^{2} \rightarrow 0$

$$
\min _{\beta} \sum_{i=0}^{m}\left\|y_{i}-f_{\beta}\left(x_{i}\right)\right\|^{2}+\sum_{j=0}^{k}\left|\beta_{j}\right|
$$

$$
f_{\beta}\left(x_{i}\right)=f_{\beta}^{\text {poly }}\left(x_{i}\right) \text { or } f_{\beta}^{\text {linear }}\left(x_{i}\right)
$$

6. Logistic Regression (NOT regression, but classification): Can fit either a line, or polynomial with sigmoid activation minimizing the sum of mean-squared error for each datapoint. The labels y are binary class labels.

$$
\begin{array}{r}
\min _{\beta} \sum_{i}\left\|y_{i}-\sigma\left(f_{\beta}\left(x_{i}\right)\right)\right\|^{2} \\
f_{\beta}\left(x_{i}\right)=f_{\beta}^{\text {poly }}\left(x_{i}\right) \text { or } f_{\beta}^{\text {linear }}\left(x_{i}\right) \\
\sigma(t)=\frac{1}{1+e^{-t}}
\end{array}
$$

Visual Representation:

Summary:

	What does it fit?	Estimated function	Error Function		
Linear	A line in n dimensions	$f_{B}^{\text {linear }}\left(x_{i}\right)=\beta_{0}+\beta_{1} x_{i}$	$\sum_{i=0}^{m}\left\\|y_{i}-f_{\beta}\left(x_{i}\right)\right\\|^{2}$		
Polynomial	A polynomial of order k	$f_{\beta}^{\text {poly }}\left(x_{i}\right)=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\ldots$	$\sum_{i=0}^{m}\left\\|y_{i}-f_{\beta}\left(x_{i}\right)\right\\|^{2}$.		
Bayesian Linear	Gaussian distribution for each point	$\mathcal{N}\left(f_{\beta}\left(x_{i}\right), \sigma^{2}\right)$	$\sum_{i}\left\\|y_{i}-\mathcal{N}\left(f_{\beta}\left(x_{i}\right), \sigma^{2}\right)\right\\|^{2}$		
Ridge	Linear/polynomial	$f_{\beta}^{\text {poly }}\left(x_{i}\right)$ or $f_{B}^{\text {linear }}\left(x_{i}\right)$	$\sum_{i=0}^{m_{i}^{2}}\left\\|y_{i}-f_{\beta}\left(x_{i}\right)\right\\|^{2}+\sum_{i=0}^{n} \beta_{j}^{2}$		
LASSO	Linear/polynomial	$f_{\beta}^{\text {poly }}\left(x_{i}\right)$ or $f_{B}^{\text {linear }}\left(x_{i}\right)$	$\sum_{i=0}^{n}\left\\|y_{i}-f_{\beta}\left(x_{i}\right)\right\\|^{2}+\sum_{i=1}^{i k} \mid \beta_{i}$		
Logistic	Linear/polynomial with sigmoid	$\sigma\left(f_{\beta}\left(x_{i}\right)\right)$	$\sum_{i=0}^{m}\left\\|y_{i}-f_{\beta}\left(x_{i}\right)\right\\|^{j} .$		

Source: https://www.cheatsheets.aqeel-anwar.com

Cheat Sheet - Regularization in ML

What is Regularization in ML?

- Regularization is an approach to address over-fitting in ML.
- Overfitted model fails to generalize estimations on test data
- When the underlying model to be learned is low bias/high variance, or when we have small amount of data, the estimated model is prone to over-fitting.
- Regularization reduces the variance of the model

Types of Regularization:

Figure 1. Overfitting

1. Modify the loss function:

- L2 Regularization: Prevents the weights from getting too large (defined by L2 norm). Larger the weights, more complex the model is, more chances of overfitting.

$$
\text { loss }=\operatorname{error}(y, \hat{y})+\lambda \sum_{j} \beta_{j}^{2} \quad \lambda \geq 0, \lambda \propto \text { model bias, } \lambda \propto \frac{1}{\text { model variance }}
$$

- L1 Regularization: Prevents the weights from getting too large (defined by L1 norm). Larger the weights, more complex the model is, more chances of overfitting. L1 regularization introduces sparsity in the weights. It forces more weights to be zero, than reducing the the average magnitude of all weights

$$
\text { loss }=\operatorname{error}(y, \hat{y})+\lambda \sum_{j}\left|\beta_{j}\right| \quad \lambda \geq 0, \lambda \propto \text { model bias, } \quad \lambda \propto \frac{1}{\text { model variance }}
$$

- Entropy: Used for the models that output probability. Forces the probability distribution towards uniform distribution.

$$
\operatorname{loss}=\operatorname{error}(p, \hat{p})-\lambda \sum_{i} \hat{p}_{i} \log \left(\hat{p}_{i}\right) \quad \lambda \geq 0, \lambda \propto \text { model bias, } \quad \lambda \propto \frac{1}{\text { model variance }}
$$

2. Modify data sampling:

- Data augmentation: Create more data from available data by randomly cropping, dilating, rotating, adding small amount of noise etc.
- K-fold Cross-validation: Divide the data into k groups. Train on (k-1) groups and test on 1 group. Try all k possible combinations.

3. Change training approach:

- Injecting noise: Add random noise to the weights when they are being learned. It pushes the model to be relatively insensitive to small variations in the weights, hence regularization
- Dropout: Generally used for neural networks. Connections between consecutive layers are randomly dropped based on a dropout-ratio and the remaining network is trained in the current iteration. In the next iteration, another set of random connections are dropped.

Figure 2. K-fold CV

Connections $=16$

Figure 3. Drop-out

Source: https://www.cheatsheets.aqeel-anwar.com

Cheat Sheet - Famous CNNs

AlexNet - 2012

Why: AlexNet was born out of the need to improve the results of the ImageNet challenge.
What: The network consists of 5 Convolutional (CONV) layers and 3 Fully Connected (FC) layers. The activation used is the Rectified Linear Unit (ReLU).
How: Data augmentation is carried out to reduce over-fitting, Uses Local response localization.

VGGNet - 2014

Why: VGGNet was born out of the need to reduce the $\#$ of parameters in the CONV layers and improve on training time
What: There are multiple variants of VGGNet (VGG16, VGG19, etc.)
How: The important point to note here is that all the conv kernels are of size 3×3 and maxpool kernels are of size 2×2 with a stride of two.

ResNet - 2015

Why: Neural Networks are notorious for not being able to find a simpler mapping when it exists. ResNet solves that.
What: There are multiple versions of ResNetXX architectures where 'XX' denotes the number of layers. The most used ones are ResNet50 and ResNet101. Since the vanishing gradient problem was taken care of (more about it in the How part), CNN started to get deeper and deeper How: ResNet architecture makes use of shortcut connections do solve the vanishing gradient problem. The basic building block of ResNet is a Residual block that is repeated throughout the network.

Figure 1 ResNet Block

Figure 2 Inception Block

Inception - 2014

Why: Lager kernels are preferred for more global features, on the other hand, smaller kernels provide good results in detecting area-specific features. For effective recognition of such a variable-sized feature, we need kernels of different sizes. That is what Inception does.
What: The Inception network architecture consists of several inception modules of the following structure. Each inception module consists of four operations in parallel, 1x1 conv layer, 3 x 3 conv layer, 5 x 5 conv layer, max pooling
How: Inception increases the network space from which the best network is to be chosen via training. Each inception module can capture salient features at different levels.

Comparison					
Network	Year	Salient Feature	top5 accuracy	Parameters	FLOP
AlexNet	2012	Deeper	84.70%	62 M	1.5 B
VGGNet	2014	Fixed-size kernels	92.30%	138 M	19.6 B
Inception	2014	Wider - Parallel kernels	93.30%	6.4 M	2 B
ResNet-152	2015	Shortcut connections	95.51%	60.3 M	11 B

Source: https://www.cheatsheets.aqeel-anwar.com

Cheat Sheet - Convolutional Neural Network

Convolutional Neural Network:

The data gets into the CNN through the input layer and passes through various hidden layers before getting to the output layer. The output of the network is compared to the actual labels in terms of loss or error. The partial derivatives of this loss w.r.t the trainable weights are calculated, and the weights are updated through one of the various methods using backpropagation.

CNN Template:

Most of the commonly used hidden layers (not all) follow a pattern
1.Layer function: Basic transforming function such as convolutional or fully connected layer.
a. Fully Connected: Linear functions between the input and the
a. Obtavollutional Layers: These layers are applied to 2D (3D) input feature maps. The trainable weights are a 2 D (3D) kernel/filter that moves across the input feature map, generating dot products with the overlapping region of the input feature map.
b.Transposed Convolutional (DeConvolutional) Layer: Usually used to increase the size of the output feature map (Upsampling) The idea behind the transposed convolutional layer is to undo (not exactly) the convolutional layer

2. Pooling: Non-trainable layer to change the size of the feature map
a. Max/Average Pooling: Decrease the spatial size of the input layer based on selecting the maximum/average value in receptive field defined by the kernel
b. UnPooling: A non-trainable layer used to increase the spatial size of the input layer based on placing the input pixel at a certain index in the receptive field of the output defined by the kernel.
3. Normalization: Usually used just before the activation functions to limit the unbounded activation from increasing the output layer values too high

a. Local Response Normalization LRN: A non-trainable layer that square-normalizes the pixel values in a feature map within a local neighborhood.
b. Batch Normalization: A trainable approach to normalizing the data by learning scale and shift variable during training.
3. Activation: Introduce non-linearity so CNN can 5. Loss function: Quantifies how far off the CNN prediction efficiently map non-linear complex mapping.
a. Non-parametric/Static functions: Linear, ReLU is from the actual labels.
b. Parametric functions: ELU, tanh, sigmoid, Leaky ReLU
c. Bounded functions: tanh, sigmoid

a. Regression Loss Functions: MAE, MSE, Huber loss
b. Classification Loss Functions: Cross entropy, Hinge loss

Source: https:/ / www.cheatsheets.aqeel-anwar.com

Cheat Sheet - Ensemble Learning in ML

What is Ensemble Learning? Wisdom of the crowd

Combine multiple weak models/learners into one predictive model to reduce bias, variance and/or improve accuracy.

Types of Ensemble Learning: N number of weak learners

1.Bagging: Trains N different weak models (usually of same types - homogenous) with N non-overlapping subset of the input dataset in parallel. In the test phase, each model is evaluated. The label with the greatest number of predictions is selected as the prediction. Bagging methods reduces variance of the prediction
2.Boosting: Trains N different weak models (usually of same types - homogenous) with the complete dataset in a sequential order. The datapoints wrongly classified with previous weak model is provided more weights to that they can be classified by the next weak leaner properly. In the test phase, each model is evaluated and based on the test error of each weak model, the prediction is weighted for voting. Boosting methods decreases the bias of the prediction.
3.Stacking: Trains N different weak models (usually of different types - heterogenous) with one of the two subsets of the dataset in parallel. Once the weak learners are trained, they are used to trained a meta learner to combine their predictions and carry out final prediction using the other subset. In test phase, each model predicts its label, these set of labels are fed to the meta learner which generates the final prediction.

The block diagrams, and comparison table for each of these three methods can be seen below.

Final Prediction

Parameter	Bagging	Boosting	Stacking
Focuses on	Reducing variance	Reducing bias	Improving accuracy
Nature of weak learners is	Homogenous	Homogenous	Heterogenous
Weak learners are aggregated by	Simple voting	Weighted voting	Learned voting (meta-learner)

Source: https://www.cheatsheets.aqeel-anwar.com

${ }^{1 / 4}$

How to prepare for behavioral interview? Collect stories, assign keywords, practice the STAR format

Keywords

Conflict Resolution	Negotiation	Compromise to achieve goal	Creativity	Flexibility	Convincing
Handling Crisis	Challenging Situation	Working with difficult people	Another team priorities not aligned	Adjust to a colleague style	Take Stand
Handling -ve feedback	Coworker view of you	Working with a deadline	Your strength	Your weakness	Influence Others
Handling failure	Handling unexpected situation	Converting challenge to opportunity	Decision without enough data	Conflict Resolution	Mentorship/ Leadership

Stories

1. List all the organizations you have been a part of. For example
2. Academia: BSc, MSc, PhD
3. Industry: Jobs, Internship
4. Societies: Cultural, Technical, Sports
5. Think of stories from step 1 that can fall into one of the keywords categories. The more stories the better. You should have at least 10-15 stories.
6. Create a summary table by assigning multiple keywords to each stories. This will help you filter out the stories when the question asked in the interview. An example can be seen below
```
Story 1: [Convincing] [Take Stand] [influence other]
Story 2: [Mentorship] [Leadership]
Story 3: [Conflict resolution] [Negotiation]
Story 4: [decision-without-enough-data]
```


STAR Format

Write down the stories in the STAR format as explained in the $2 / 4$ part of this cheat sheet. This will help you practice the organization of story in a meaningful way.

Example: "Tell us about a time when you had to convince senior executives"

Situation

Explain the situation and provide necessary context for your story.

Task

Explain the task and your responsibility in the situation
"I did a quick background check on the executives to know better about their area of expertise so that I can convince them accordingly. I prepared an elaborative 15 slide presentation starting with explaining their approach, moving onto my proposed approach and finally comparing them on preliminary results.

[^0]Result
State the outcome of the result of your actions

"I worked as an intern in XYZ company in the summer of 2019. The project details provided to me was elaborative. After some initial brainstorming, and research I realized that the project approach can be modified to make it more efficient in terms of the underlying KPIs. I decided to talk to my manager about it."

> "I had an hour-long call with my manager and explained him in detail the proposed approach and how it could improve the KPIs. I was able to convince him. He asked me if I will be able to present my proposed approach for approval in front of the higher executives. I agreed to it. I was working out of the ABC(city) office and the executives need to fly in from XYZ(city) office."

How to answer a behavioral question?
 Understand, Extract, Map, Select and Apply

Example: "Tell us about a time when you had to convince senior executives"

Understand the question

Understand

Extract

Select

Select the best story

From the shortlisted stories, pick the one that best describes the question and has not been used so far in the interview

> Example: Story3

Apply the STAR method

Apply the STAR method on the selected story to answer the question

Example: See Cheat Sheet $2 / 3$ for details

[^0]: "After some active discussion we were able
 to establish that the proposed approach was better than the initial one. The executives proposed a few small changes to my approach and really appreciated my stand. At the end of my internship, I was selected among the 3 out of 68 interns who got to meet the senior vice president of the company over lunch."

