B. Tech Degree IV Semester Examination, April 2009

IT/CS/EC/CE/ME/SE/EB/EI/EE/FT 401 ENGINEERING MATHEMATICS III

(2006 Scheme)

Time: 3 Hours

Maximum Marks: 100

PART - A (Answer <u>ALL</u> questions)

 $(8 \times 5 = 40)$

- I. (a) Show that the function $f(z) = \sin z$ is analytic.
 - (b) What do you mean by conjugate harmonic function? Verify whether the function $e^x \sin y$ is harmonic.
 - (c) State and prove Canchy's integral formula.
 - (d) Define the residue of a function at an isolated singularity and determine the poles

of
$$\frac{z^2 - 2z}{(z+1)^2(z^2+1)}$$
 and the residue at each pole.

- (e) Form the partial differential equation by eliminating the arbitrary constants in $z = (x-a)^2 + (y-b)^2 + 1$.
- (f) Solve $p^2 + q^2 = x^2 + y^2$.
- (g) Derive one dimensional heat equation.
- (h) Solve the equation $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, $u(0, y) = 8e^{-3y}$ by the method of separation of variables.

PART - B

 $(4 \times 15 = 60)$

- II. (a) Show that the function $f(z) = \sqrt{|xy|}$ is not regular at the origin, eventhough Canchy Riemann equations are satisfied at the origin. (5)
 - (b) Find the analytic function w = u + iv, given that $v = e^{2x} (x \cos 2y y \sin 2y)$. (5)
 - (c) Find the equation of the orthogonal trajectories of the family of curves given by $3x^2y + 2x^2 y^3 2y^2 = a, \text{ where } a \text{ is an arbitrary constant.}$ (5)

OR

- III. (a) What do you mean by conformal mapping? Also discuss about
 - (i) Translation
 - (ii) Magnification and rotation (5)
 - (b) Discuss the transformation about $w = \sin z$. (5)
 - (c) Show that the image of the hyperbola $x^2 y^2 = 1$ under the transformation

$$w = \frac{1}{z} \text{ is the lemniscate } R^2 = \cos 2\phi.$$
 (5)

(Turn Over)

2 Verify Canchy's theorem for the integral of z^3 taken over the boundary of the IV. (a) rectangle with vertices -1, 1, 1+i, -1+i. (5) Find the Lausent's series expansion of $\frac{z^2-1}{z^2+5z+6}$ about z=0 in the region (b) 2 < |z| < 3. (5) Using Residue theorem, evaluate $\int_{c}^{c} \frac{3z^2 + 2}{(z-1)(z^2 + 9)} dz$ where C: |z-2| = 2. (c) (5) Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)} \frac{dx}{(x^2 + b^2)}$ using contour integration where a > b > 0. V. (a) (8)Evaluate $\int_{-\infty}^{\infty} \frac{\sin mx}{x} dx$ using contour integration where m > 0. (b) (7)VI. Solve p(1+q)=qz(i) (4) $z^{2}(p^{2}x^{2}+q^{2})=1$ (ii) (5) $(x^2 + y^2 + yz)p + (x^2 + y^2 - xz)q = z(x + y)$ (iii) (6) Solve -VII. $(D^3 - 3D^2D^1 + 4D'^3)z = e^{x+2y}$ (4) $\left(D^2 - 3DD^1 + D'^2\right)z = \sin x \cos y$ (ii) (5) $(D^3 - 7DD'^2 - 6D'^3) = x^2y + \sin(x + 2y)$ (iii) (6)VIII. (a) A string is stretched and fastened to two points ℓ apart. Motion is started by displacing the string in the form $y = a \sin(\pi x/\ell)$ from which it is released at time t = 0. Show that the displacement of any point at a distance x from one end at time t is given

by $y(x,t) = a\sin(\pi x/\ell)\cos(\pi ct/\ell)$. (8)

Obtain D'Alembert's solution of the wave equation by the method of separation of (b) variables.

A string is stretched and fastened to two points x = 0 and $x = \ell$ apart. Motion is

IX. (a) started by displacing the string into the form $y = k(\ell x - x^2)$ from which it is released at time t = 0. Find the displacement of any point on the string at a distance of x from one end at time t.

Obtain solution of Laplace's equation over a rectangular region by the method of (b), separation of variables.

(7)

(8)

(7)