mk.H.1stHlf12.38

Con. 3924-12.

GN-6956

(3 Hours)

[Total Marks: 100

- N.B. (1) Question No. 1 is compulsory.
 - (2) Solve any four questions from remaining six questions.
 - (3) Assume suitable data wherever necessary.
- 1. Solve any five :--

20

- (a) Explain the operation of a basic differential amplifier.
- (b) Define following parameters of Op-Amp:-
 - (i) Input bias current
 - (ii) Input offset current
 - (iii) Slew Rate
 - (iv) CMRR.
- (c) In the figure, an inverting amplifier is shown with $R_1 = 20 \text{ k}\Omega$ and $R_1 = 100 \text{ k}\Omega$. A load of 10 kΩ is connected to the output with input voltage of 0.7 V. Calculate -
 - (i) I, (ii) Vo

 - (iv) Total current Io

- (d) Explain about inverting and non-inverting amplifier.
- (e) What is peak detector?
- (f) List different applications of PLL.
- (g) Explain about V to F converter.
- 2. (a) Design a practical integrater circuit with a d.c. gain of 10 to integrate a square 10 wave of 10 kHz.
 - (b) Explain in detail about instrumentation amplifier.

10

(a) Explain with design about First Order Low Pass filter.

10

(b) Explain in detail about :-

10

- (i) Switched capacitor filter
- (ii) KRC filter.

(e) Precision Rectifier.

(a) What is Comparator? Explain in detail about Schmitt trigger. 10 (b) With neat diagram and waveform, explain in detail about Astable Multi-Vibrator. 10 (a) Explain in detail about Successive Approximation method of A to D conversion. 10 (b) What is the function of Voltage Regulator? Explain in detial about Fixed Voltage 10 Series Regulator. 10 (a) 6. RA 4 3 RB 5 Yc In the above figure, for $R_A = 6.8 \text{ k}\Omega$, $R_B = 3.3 \text{ k}\Omega$ and $C = 0.1 \mu\text{F}$, calculate tHIGH (ii) t, ow free running frequency (iii) (iv) duty cycle D. (b) What is RC phase shift oscillator? Explain in detial. 10 Write short notes on any four :-20 (a) Current to voltage converter (b) R-2R Ladder DAC converter (c) Phase Locked Loop (d) Sawtooth waveform generator