M 26158
Reg. No.: \qquad
Name: \qquad

VII Semester B.Tech. Degree (Reg./Sup./Imp. - Including Part Time) Examination, November 2014 (2007 Admn. Onwards)
 PT 2K6/2K6 EC 705 (A) : PROBABILITY AND RANDOM PROCESS

Time: 3 Hours
Max. Marks: 100

1. a) If the events A and B are independent. Show that \bar{A} and B are also independent.
b) A continuous random variable X has a pdf $f(x)=K x^{2} e^{-x}, x \geq 0$. Find K, mean and variance.
c) A fair die is tossed 720 times. Use Tchebycheff inequality to find a lower bound for the probability of getting 100 to 140 sixes.
d) The mean and variance of a binomial distribution are 4 and $4 / 3$ respectively. Find $P(X \geq 1)$.
e) If the joint pdf of (X, Y) is given by $f(x, y)=24 y(1-x), 0 \leq y \leq x \leq 1$ find $E(X Y)$.
f) The life time of a certain brand of an electric bulb may be considered a random variable with mean 1200 h and s.d. 250 h . Find the probability using central limit theorem, that the average life time of 60 bulbs exceeds 1250 h .
g) A radio active source emits particles of a rate 5 per minute in accordance with Poisson process. Each particle emitted has a probability of 0.6 being recorded. Find the probability that 10 particles are recorded in 4 -min. period.
h) Define Markov process, Markov chain.
2. a) i) There are 3 true coins and 1 false coin with 'head' on both sides. A coin is chosen at random and tossed 4 times. If head occurs all the 4 times, what is the probability that the false coin has been chosen and used?
ii) If the pdf of a random variable X is given by $f(x)=\left\{\begin{array}{cc}1 / 4, & -2<x<2 \\ 0, & \text { else where }\end{array}\right.$, find $p\{|X|>1\}$.

M 26158

|||||||||||||||||||||| nut||||||||

b) i) A continuous random variable has the $\operatorname{pdf} f(x)=K x^{4},-1<x<0$, find the value of K and also $P(x>-1 / 2 / x<-1 / 4)$.
ii) There are 2 bags one of which contains 5 red and 8 black balls and the other 7 red and 10 black balls. A ball is drawn from one or the other of the 2 bags. Find the chance of drawing a red ball.

8
3. a) Fit a Poisson distribution for the following distribution :

x:	0	1	2	3	4	5
$f:$	142	156	69	27	5	1
	OR					

b) In a certain examination the percentage of students passing an getting distinctions were 55 and 9 respectively. Estimate the average marks obtained by the students, the minimum marks for pass and distinction being 44 and 75 respectively.
4. a) i) If the random variable X is uniformly distributed in $(0,1)$ find the pdf of

$$
Y=\frac{1}{X+1}
$$

ii) If X, Y, Z are uncorrelated random variables with zero mean and standard deviation 5, 12 and 9 respectively and if $U=X+Y$ and $V=Y+Z$, find the correlation co-efficient between U and V.

OR
b) i) If the joint pdf of (X, Y) is given by $f(x, y)=x+y, 0 \leq x, y \leq 1$. Find $f_{x y}$.
ii) A distribution with unknown mean μ has variance equal to 1.5. Use central limit theorem to find how large a sample should be taken from the distribution in order that the probability will be at least 0.95 that the sample mean will be within 0.5 of the population mean.
5. a) Given a random variable Y with characteristic function $\phi(w)=E\left\{e^{i w y}\right\}$ and a random process defined by $X(t)=\cos (\lambda t+Y)$, show that $\{X(t)\}$ is stationary in the wide sense if $\phi(1)=\phi(2)=0$.

OR
b) If $X(t)=\mu+V(t)$ where $V(t)$ is a white noise with $C\left(t_{1}, t_{2}\right)=\phi\left(t_{1}\right) \delta\left(t_{1}-t_{2}\right)$ where $\phi(t)$ is a bounded function of t and δ is the unit impulse function, prove that $\{X(t)\}$ is a mean - ergodic process.

