M 26158

Reg.	NO.	:	***************************************	
			•	

Name :

VII Semester B.Tech. Degree (Reg./Sup./Imp. – Including Part Time) Examination, November 2014 (2007 Admn. Onwards) PT 2K6/2K6 EC 705 (A) : PROBABILITY AND RANDOM PROCESS

Time : 3 Hours

Max. Marks: 100

- 1. a) If the events A and B are independent. Show that \overline{A} and B are also independent.
 - b) A continuous random variable X has a pdf $f(x) = Kx^2e^{-x}$, $x \ge 0$. Find K, mean and variance.
 - c) A fair die is tossed 720 times. Use Tchebycheff inequality to find a lower bound for the probability of getting 100 to 140 sixes.
 - d) The mean and variance of a binomial distribution are 4 and $\frac{4}{3}$ respectively. Find P(X ≥ 1).
 - e) If the joint pdf of (X, Y) is given by f(x, y) = 24y(1 x), $0 \le y \le x \le 1$ find E(XY).
 - f) The life time of a certain brand of an electric bulb may be considered a random variable with mean 1200 h and s.d. 250 h. Find the probability using central limit theorem, that the average life time of 60 bulbs exceeds 1250 h.
 - g) A radio active source emits particles of a rate 5 per minute in accordance with Poisson process. Each particle emitted has a probability of 0.6 being recorded. Find the probability that 10 particles are recorded in 4-min. period.
 - h) Define Markov process, Markov chain.
- 2. a) i) There are 3 true coins and 1 false coin with 'head' on both sides. A coin is chosen at random and tossed 4 times. If head occurs all the 4 times, what is the probability that the false coin has been chosen and used ?
 - ii) If the pdf of a random variable X is given by $f(x) = \begin{cases} \frac{1}{4}, & -2 < x < 2\\ 0, & \text{else where} \end{cases}$

find $p\{|X| > 1\}$.

P.T.O.

7

8

 $(8 \times 5 = 40)$

M 26158

b) i) A continuous random variable has the pdf $f(x) = Kx^4$, -1 < x < 0, find the

value of K and also $P(X > -\frac{1}{2}/X < -\frac{1}{4})$.

- ii) There are 2 bags one of which contains 5 red and 8 black balls and the other 7 red and 10 black balls. A ball is drawn from one or the other of the 2 bags. Find the chance of drawing a red ball.
- 3. a) Fit a Poisson distribution for the following distribution :

X :	0	1	2	3	4	5
f:	142	156	69	27	5	1

- b) In a certain examination the percentage of students passing an getting distinctions were 55 and 9 respectively. Estimate the average marks obtained by the students, the minimum marks for pass and distinction being 44 and 75 respectively.
- 4. a) i) If the random variable X is uniformly distributed in (0, 1) find the pdf of

$$Y = \frac{1}{X+1}.$$

ii) If X, Y, Z are uncorrelated random variables with zero mean and standard deviation 5, 12 and 9 respectively and if U = X + Y and V = Y + Z, find the correlation co-efficient between U and V.

- b) i) If the joint pdf of (X, Y) is given by f(x, y) = x + y, $0 \le x$, $y \le 1$. Find f_{xy} .
 - ii) A distribution with unknown mean μ has variance equal to 1.5. Use central limit theorem to find how large a sample should be taken from the distribution in order that the probability will be at least 0.95 that the sample mean will be within 0.5 of the population mean.
- 5. a) Given a random variable Y with characteristic function φ (w) = E{e^{iwy}} and a random process defined by X(t) = cos (λt + Y), show that {X(t)} is stationary in the wide sense if φ (1) = φ (2) = 0.
 OR
 - b) If $X(t) = \mu + V(t)$ where V(t) is a white noise with $C(t_1, t_2) = \phi(t_1) \delta(t_1 t_2)$ where $\phi(t)$ is a bounded function of t and δ is the unit impulse function, prove that {X(t)} is a mean – ergodic process.

15

7

8

15

7

8

8

15

15