(DEE 224)

B. Tech. DEGREE EXAMINATION, MAY - 2015

(Examination at the End of Second Year)

Electricals and Electronics Engineering

Paper - IV : NETWORK ANALYSIS - II

Time : 3 Hours

Maximum Marks: 75

Answer question No.1 compulsory	$(15 \times 1 = 15)$

<u>Answer any ONE question from each unit</u> $(4 \times 15 = 60)$

- *1)* a) Define path.
 - b) Define Co-Tree.
 - c) Write expressions for hybrid Parameters.
 - d) Write expressions for Y Parameters.
 - e) Write expression for transformed impedance of Capacitance 'C'.
 - f) Draw waveform of pulse function.
 - g) Define zero.
 - h) Draw 'pie' network.
 - i) Define mutual self inductance.
 - j) Define Faraday's first law.
 - k) Draw high pass filter.
 - l) Draw constant K low pass filter.
 - m) Write any two disadvantages of three phase system.

- n) Write expression for power using 2 wattmeter method.
- o) Write the relation between line and phase quantities of 3 phase star system.

<u>UNIT - I</u>

- 2) a) Write the properties of tree with example.
 - b) For the network shown in figure, write a tie set schedule.

- 3) a) State and derive the expression for ABCD parameters.
 - b) Obtain Z parameters.

<u>UNIT - II</u>

- *a)* Explain ABCD parameters in terms of transformed networks.
 - b) Find ABCD parameters for the network shown in below.

OR

- 5) a) State and derive expressions for hybrid parameters in terms of transformed variables.
 - b) State and derive expressions for Z parameters in terms of transformed variables.

<u>UNIT - III</u>

6) Clearly explain Low Pass Filter.

OR

- 7) a) Define coefficient of coupling. In which type of circuits it is minimum and in which type of circuits it is maximum?
 - b) Two coupled coils with respect to self inductances $L_1 = 0.6H$, $L_2 = 0.4H$ having a k = 0.4. Coil 2 has 100 turns. The current in coil 1 is $l_1 = 10sin200t$ A. Determine the voltage at coil 2 and maximum flux set by coil 1.

UNIT - IV

- 8) a) Derive the relation between phase and line values of a 3-phase balanced delta connected system.
 - b) Three impedances each of (5 + j12) ohm are connected in star to a 220V, 3-phase, 50 Hz supply. Calculate the line currents.

OR

9) Two watt meters are used to measure the power input in a 3 phase circuit indicate 1000 W and 500 W respectively. Find the power factor of the circuit : when i) when both wattmeter readings are positive. ii) When the latter is obtained by reversing the current coil connections. Derive the expression for power factor.

**