

Code No.: 5342/S

FACULTY OF ENGINEERING B.E. 2/4 (CSE) I Semester (Suppl.) Examination, July 2012 LOGIC AND SWITCHING THEORY

Time: 3 Hours]

[Max. Marks: 75

Note: Answer all questions from Part A, Answer any five questions from Part B.

	PART-A	(25 Marks)
question a	Simplity the following Boolean expressions to a minimum no. of literals.	2
	a) $ABC + AB\overline{C} + \overline{A}B$.	
	b) $\overline{(A+B)}$. $\overline{(A+B)}$.	
2.	Represent the decimal numbers 694 and 835 in BCD and then show the necessary to form their sum.	3
3.	Draw the NAND logic diagram for the following expression $f = (\overline{A}B + C\overline{D}). E + B\overline{D} (A + B).$	·2
4.	Prove that the dual of the exclusive OR is also its complement.	3
5.	Differentiate between combinational and sequential circuits.	2.
6.	Write a VHDL code for 4 to 1 multiplexer.	3
7.	Define the term clock skew.	2
8.	Draw the excitation table for SR flip-flop.	2
9.	Distinguish between a Synchronous counter and Ripple counter.	3
10.	What is the necessary and sufficient condition for a function to be symmetric.	netric? 3

Code No.: 5342/S

	PART – B (50 Mar	ks)
11.	Simplify the following function into sum-of-products and product-of-sums term. $F(A, B, C, D) = \sum_{m} (2, 3, 5, 7, 8, 10, 12, 13).$	10
12.	Derive the logic circuits for a 3-bit parity generator and 4-bit parity checker using an even parity bit.	10
13.	a) Distinguish between a Decoder and demultiplexer.b) Design a 4-bit priority encoder circuit.	4
14.	By means of tabulation method, simplify the Boolean function. $f(w, x, y, z) = \sum_{m} (0, 2, 3, 5, 7, 8, 10, 11, 14, 15).$	10
15.	Design an excess-3 code converter using NAND gates.	10
16.	a) Explain with a diagram about positive edge triggered D-type flip-flop.b) Design a mod-8 counter with JK flip-flops.	5 5
17.	Write short notes on the following: a) Symmetric relay contact network. b) 4-bit shift register.	5