Total No. & Questions-12] [Total No. of Printed Pages-8+1 [3862]-101

S.E. (CIVIL) (I Semester) EXAMINATION, 2010 ENGINEERING MATHMATICS-III

(2008 COURSE)

Time : Three Hours

Maximum Marks : 100

- **N.B.** :- (i) Answer **3** questions from Section I and **3** questions from Section II.
 - (*ii*) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Use of logarithmic tables, slide rule, Mollier charts, electronicpocket calculator and steam tables is allowed.
 - (vi) Assume suitable data, if necessary.

SECTION I

1.	<i>(a)</i>	Solve any three :	[12]
		(i) $(D^2 + 3D + 2)y = e^{e^x} + \cos e^x$	
		(<i>ii</i>) $(D^2 - 4D + 4)y = e^x \cos^2 x$	

P.T.O.

(*iii*)
$$\frac{d^2y}{dx^2} + 4y = \tan 2x$$
 [By variation of parameters]

$$(iv) \quad x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10 \left(x + \frac{1}{x}\right)$$

(*b*) Solve :

> $\frac{dx}{dt} + y = e^t$ $x - \frac{dy}{dt} = e^{-t}$

$$x - \frac{dy}{dt} = e^{-t},$$

given that x = 1, y = 0 at t = 0.

Or

2. (a) Solve any three :

(i)
$$(D^{2} + 6D + 9)y = \frac{1}{x^{3} e^{3x}}$$

(ii) $(D^{5} - D)y = 2x + 2^{x}$
(iii) $(D^{2} - 4D + 4)y = e^{2x} \sec^{2}x$

[By variation of parameters]

$$(iv) (x + a)^2 \frac{d^2 y}{dx^2} - 4 (x + a) \frac{dy}{dx} + 6y = x$$

$$\frac{dx}{x(y^2 - z^2)} = \frac{dy}{-y(z^2 + x^2)} = \frac{dz}{z(x^2 + y^2)}$$

[3862]-101

[5]

[12]

[5]

(a) The differential equation satisfied by a beam, uniformly loaded with one end fixed and second subjected to a tensile force P is given by :

$$\mathrm{EI}\,\frac{d^2y}{dx^2} - \mathrm{P}y = \frac{-\mathrm{W}x^2}{2}$$

Show that the elastic curve for the beam under conditions y = 0 and $\frac{dy}{dx} = 0$.

when x = 0, is given by :

$$y = \frac{W}{2P} \left[x^{2} + \frac{2}{n^{2}} - \frac{e^{nx}}{n^{2}} - \frac{e^{-nx}}{n^{2}} \right]$$

where, $\frac{P}{EI} = n^{2}$. [8]

(b) A homogeneous rod of conducting material of length 100 cm with ends kept at zero temperature satisfies the equation:

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}.$$

If the initial temperature is :

$$u(x,0) = \begin{cases} x & ; \ 0 \le x \le 50 \\ 100 - x & ; \ 50 \le x \le 100. \end{cases}$$
[8]

- 4. (a) It is found experimentally that a weight of 3 kg stretches a spring to 15 cm. If the weight is pulled down 10 cm below equilibrium position and then released
 - (i) find the amplitude, period and frequency of motion.
 - (*ii*) determine the position, velocity and acceleration as a function of time.

(b) Solve the equation :
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

subject to the following conditions :

- (i) $u(x, \infty) = 0$ (ii) u(0, y) = 0(iii) u(1, y) = 0(iv) u(x, 0) = x(1 - x) for 0 < x < 1. [8]
- 5. (a) Solve the following system of equations by Gauss-Seidel iteration
 method : [9]

$$9x_1 + 2x_2 + 4x_3 = 20$$

$$x_1 + 10x_2 + 4x_3 = 6$$

$$2x_1 - 4x_2 + 10x_3 = -15$$

(b) Use Runge-Kutta method of fourth order to solve :

$$\frac{dy}{dx} = \sqrt{x + y} \quad ; \quad y(0) = 1$$

to find y at $x = 0.2$ taking $h = 0.1$. [8]

6. (a) Solve the equation :

$$\frac{dy}{dx} = x^2 + y$$
; y (0) = 1

to find y at x = 0.1 using Euler's modified method taking h = 0.05. [9]

(b) Solve the following system of equations by Cholesky's method :

$$4x_1 - 2x_2 = 0$$

$$-2x_1 + 4x_2 - x_3 = 1$$

$$-x_2 + 4x_3 = 0.$$
[8]

SECTION II

7. (a) Compute the first four moments, coefficient of skewness and kurtosis for the following frequencies : [6]

No. of Jobs completed	No. of Workers
0—10	6
10—20	26
20—30	47
30-40	15
40—50	6

(b) Compute the coefficient of correlation between the supply and price : [6]

x	У	f
5	7	6
9	9	9
15	14	13
19	21	20
24	23	16
28	29	11
32	30	7

(c) There are 6 married couples in a room. It two persons are chosen at random, find the probability that :

- (i) they are of different sex
- (*ii*) they are married to each other. [5]

Or

8. (a) Obtain the correlation between population density (per square mile) and death rate (per thousand persons) from the data related to 5 cities. [6]

Population Density	Death Rate
200	12
500	18
400	16
700	21
300	10

6

- (b) If two lines of regressions are 9x + y λ = 0 and 4x + y = μ and the means of x and y and 2 and -3 respectively, find the values of λ and μ and coefficient of correlation between x and y.
- (c) Number of road accidents follows a Poisson's distribution with mean 5, find the probability that in a certain month number of accidents on the highway will be : [5]
 - (i) less than 3
 - (*ii*) between 3 and 5
 - (iii) more than 3.
- 9. (a) A particle describes the straight line r = a sec θ with constant angular velocity ω. Find the radial and transverse components of velocity and acceleration. [5]
 - (b) If the directional derivatives of \$\overline\$ = a (x + y) + b(y + z)\$
 + c(x + z) has maximum value 12 in the directional parallel to the line

$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-1}{3}$$

find the values of a, b, c. [5]

- (c) Establish any two :
 - (*i*) If $\rho \overline{\mathbf{E}} = \nabla \phi$, prove that $\overline{\mathbf{E}}$. curl $\overline{\mathbf{E}} = 0$.
 - (*ii*) Show that curl curl curl curl $\overline{E} = \nabla^4 \overline{E}$, where \overline{E} is solenoidal.

$$(iii) \nabla \cdot (r^3 \overline{r}) = 6r^3.$$

Or

- 10. (a) A particle moves along the curve x = a cos t, y = a sin t;
 z = bt with constant angular velocity ω. Find the radial and transverse components of its linear velocity and acceleration at any time t. [5]
 - (b) Find the directional derivatives of ∇f at (1, 2, -1) where $f(x, y, z) = x^2y + xyz + z^3$ along normal to the surface $x^2y^3 = 4xy + y^2z$ at the point (1, 2, 0). [5]
 - (c) Establish any tw :
 - (*i*) $\nabla^4 e^r = e^r + \frac{4}{r}e^r$ (*ii*) $\overline{\mathbf{F}} = \frac{\overline{a} \times \overline{r}}{r^n}$ is solenoidal field

$$(iii) \nabla \times [\overline{a} \times (\overline{b} \times \overline{r})] = \overline{a} \times \overline{b}$$

where \overline{a} and are constant vectors. [6]

11. (a) Verify Green's theorem for $\overline{\mathbf{F}} = xi + y^2 j$ over first quadrant of the circle $x^2 + y^2 = 1$. [6]

(b) Evaluate
$$\iint_{\mathbf{S}} (x\hat{i} + y\hat{j} + z^2\hat{k}) \cdot d\mathbf{S}$$

where S is the curved surface of the cylinder $x^2 + y^2 = 4$ bounded by planes z = 0 and z = 2. [6]

(c) Evaluate using Stokes' theorem
$$\int_{C} (ydx + zdy + xdz)$$
, where C is intersection of $x^2 + y^2 + z^2 = a^2$, $x + z = a$. [5]

12. (a) Evaluate
$$\iint_{S} (2xy\overline{i} + yz^{2}\overline{j} + xz\overline{k}) d\overline{S}$$
 over the surface of the region bounded by $x = 0$, $y = 0$, $y = 3$, and $x + 2z = 6$. [6]

- (b) Obtain the equation of streamlines in case of steady motion of fluid defined by $\overline{q} = (y - xz)\overline{i} + (yz + x)\overline{j} + (x^2 + y^2)\overline{k}$. [6]
- (c) Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ for $\overline{F} = (2y + 3) \overline{i} + xz \overline{j} + (4z x) \overline{k}$ along the path $x^2 = 2t^2$; y = t; $z = t^3$ from t = 0 to t = 1. [5]