Reg. No. : \qquad
Name : \qquad

Third Semester B.Tech. Degree (Reg./Sup./Imp. - Including Part Time) Examination, November 2014
 (2007 Admn. Onwards)
 PT 2K6/2K6 CE/ME/EE/EC/AE1/CS/IT 301 : ENGINEERING MATHEMATICS - II

Time: 3 Hours
Max. Marks : 100

PART - A

1. Using Taylor's theorem express $2 x^{3}-7 x^{2}+x-6$ in powers of $(x-1)$.
2. Test the convergence of $1+\frac{1}{2^{2}}+\frac{2^{2}}{3^{3}}+\frac{3^{3}}{4^{4}}+\ldots$
3. Find the non trivial solutions of $x_{1}+2 x_{2}-x_{3}=0 ; 3 x_{1}+x_{2}-x_{3}=0 ; 2 x_{1}-x_{2}=0$.
4. Find the Eigen values of $\left[\begin{array}{lll}3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3\end{array}\right]$.
5. Find the circulation of $\bar{F}=y \bar{i}+z \bar{j}+x \bar{k}$ around the circle $x^{2}+y^{2}=1, z=0$.
6. Using divergence theorem show that $\iint_{S} \bar{r} \cdot \hat{n} d s=3 V$ where V is the volurne enclosed by the surface S and \bar{r} is the position vector of any point on the surface.
7. Define subspace of a vector space. Check whether $W=\{(a, b, c) / a+b+c=0\}$ is a subspace of R^{3}.
8. Let $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(2 x, 4 x-y, 2 x+3 y-z)$. Show that T is invertible and find T^{-1}.

PART-B

9. If $y=\left(x+\sqrt{x^{2}-1}\right)^{m}$ show that $\left(x^{2}-1\right) y_{n+2}+x(2 n+1) y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$.

OR

10. Test the convergence of $x+\frac{1}{2} \frac{x^{3}}{3}+\frac{1.3}{2.4} \frac{x^{5}}{5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^{7}}{7}+\ldots$.
11. Verify that the Eigen values of A^{2} and A^{-1} are respectively the squares and reciprocals of the Eigen values of A given that $A=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$.

OR

12. Verify Cayley-Hamilton theorem and hence find A^{-1} if $A=\left[\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$.
13. Verify Green's theorem for $\int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the boundary of the regress defined by the lines $x=0, y=0, x+y=1$.

OR

14. Verify Stoke's theorem for $\bar{F}=y \bar{i}+(x-2 x z) \bar{j}-x y \bar{k}$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the $X Y$ plane.
15. Prove that an orthogonal set of nonzero vectors in a vector space is linearly independent. Is the converse true (give example).

OR
16. a) Define linearly independent and dependent vectors. Show that the vector $X_{1}=(1,2,-1,3), X_{2}=(2,-1,3,2)$ and $X_{3}=(-1,8,-9,5)$ form a linearly dependent system. Find the linear relation connecting thern.
b) Find the subspace of R^{3} spanned by $(1,1,1),(2,1,0)$ and (1, $\left.1,-1\right)$. (15×4=60)

