d Sem

Reg. No. :

Name :

Third Semester B.Tech. Degree (Reg./Sup./Imp. – Including Part Time) Examination, November 2014 (2007 Admn. Onwards) PT 2K6/2K6 CE/ME/EE/EC/AE1/CS/IT 301 : ENGINEERING MATHEMATICS – II

Time: 3 Hours

Max. Marks : 100

PART-A

- 1. Using Taylor's theorem express $2x^3 7x^2 + x 6$ in powers of (x 1).
- 2. Test the convergence of $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \dots$
- 3. Find the non trivial solutions of $x_1 + 2x_2 x_3 = 0$; $3x_1 + x_2 x_3 = 0$; $2x_1 x_2 = 0$.
- 4. Find the Eigen values of $\begin{vmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{vmatrix}$.
- 5. Find the circulation of $\overline{F} = y\overline{i} + z\overline{j} + x\overline{k}$ around the circle $x^2 + y^2 = 1$, z = 0.
- 6. Using divergence theorem show that $\iint_{S} \overline{r} \cdot \hat{n} \, ds = 3V$ where V is the volume enclosed by the surface S and \overline{r} is the position vector of any point on the surface.
- 7. Define subspace of a vector space. Check whether $W = \{(a, b, c)/a + b + c = 0\}$ is a subspace of \mathbb{R}^3 .
- 8. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (2x, 4x y, 2x + 3y z). Show that T is invertible and find T^{-1} . (8×5=40)

P.T.O.

M 26131

PART-B

9. If
$$y = (x + \sqrt{x^2 - 1})^m$$
 show that $(x^2 - 1)y_{n+2} + x(2n+1)y_{n+1} + (n^2 - m^2)y_n = 0$.

10. Test the convergence of $x + \frac{1}{2}\frac{x^3}{3} + \frac{1.3}{2.4}\frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\frac{x^7}{7} + \dots$

11. Verify that the Eigen values of A^2 and A^{-1} are respectively the squares and

reciprocals of the Eigen values of A given that $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$.

OR

- 12. Verify Cayley-Hamilton theorem and hence find A^{-1} if $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$.
- 13. Verify Green's theorem for $\int_{C} (3x^2 8y^2) dx + (4y 6xy) dy$ where C is the boundary of the regress defined by the lines x = 0, y = 0, x + y = 1.

OR

- 14. Verify Stoke's theorem for $\overline{F} = y\overline{i} + (x 2xz)\overline{j} xy\overline{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the XY plane.
- 15. Prove that an orthogonal set of nonzero vectors in a vector space is linearly independent. Is the converse true (give example).

OR

- 16. a) Define linearly independent and dependent vectors. Show that the vector $X_1 = (1, 2, -1, 3), X_2 = (2, -1, 3, 2)$ and $X_3 = (-1, 8, -9, 5)$ form a linearly dependent system. Find the linear relation connecting them.
 - b) Find the subspace of R³ spanned by (1, 1, 1), (2, 1, 0) and (1, 1, -1). (15×4=60)