1: 1st half-12-(Con-4608)JP

Con. 4608-12.

GN-8795

(3 Hours)

Total Marks: 100

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions from remaining six questions.
 - (3) Assumption made should be clearly stated.
 - (4) Assume suitable data whenever required.
- (a) Explain Big-oh, Omega and Theta Notations with help of example. How do we 10 analyse and measure time and space complexity of algorithms?
 - (b) Construct the Optimal Binary Search Tree for the identifier set $(a_1, a_2, a_3, a_4) = (\text{cout, float, if, while}).$

with P (1:4) =
$$\left(\frac{1}{20}, \frac{1}{5}, \frac{1}{10}, \frac{1}{20}\right)$$
 and $q(0:4) = \left(\frac{1}{5}, \frac{1}{10}, \frac{1}{5}, \frac{1}{20}, \frac{1}{20}\right)$.

- 2. (a) Explain Flow Shop Scheduling with help of suitable examples.
 - (b) Write down Prim's Algorithm and solve following problem:—

- 3. (a) Write Randomized Quick Sort Algorithm and explain with help of example.
 - (b) Explain 0/1 Knapsack problem using Branch and Bound Method.

10 10

10

Con. 4608-GN-8795-12.

2

- 4. (a) Describe Traveling Salesperson Problem. Explain how to solve using Branch 10 and Bound Method.
 - (b) Write algorithm of Sum of Subsets. Solve following problem and draw portion of state space tree.
 w = {5, 7, 10, 12, 15, 18, 20} and m = 35. Find all possible subsets of w that sum to m.
- 5. (a) Explain Strassen's Matrix multiplication and derived its time complexity.
 - (b) Write down Knuth-Morris-Pratt Algorithm.
- 6. (a) Write algorithm of Job Sequencing with Deadlines. Solve the following problem $\frac{10}{n}$ = 5.

$$(P_1, P_2, P_3, P_4, P_5) = (20, 15, 10, 5, 1)$$
 and $(d_1, d_2, d_3, d_4, d_5) = (2, 2, 1, 3, 3)$.

- (b) Explain Hamiltonian Cycles Algorithm, and draw static space tree.
- Write short notes on (Any four) :—

20

- (a) Tries
 - (b) Randomized Algorithm
 - (c) N-Queens Problem
 - (d) Bellman and Ford Algorithm
 - (e) Optimal Storage on Tapes.