

IV Semester M.C.A. Examination, June/July 2018 (CBCS) COMPUTER SCIENCE MCA 402T : Advanced Algorithms

Time: 3 Hours

Max. Marks: 70

Instruction : Answer any five from Part - A and any four from Part - 8.

PART - A

Answer any five of the following. Each question carries 6 marks:

(5×6=30)

- Define and explain various asymptotic notations used to represent the rate of growth of algorithms running time.
- Solve the following recurrence relation to give tight upper bound using substitution method T(n) = 2T n.
- Compute all-pairs shortest paths for the following sparse graph using Johnson's Algorithm.

- Explain maximum bipartite matching with suitable example.
- Solve the following congruence using Chinese Flemainder Theorem.
 - a) x = 2 (mod 3)
 - b) x = 4 (mod 5)
 - c) x ≤ 5 (mod 7)
- Write extended Euclid's algorithm and also find GCD (161, 28) using extended form.

- Apply Boyer Moore algorithm to search pattern "BADBAB" in the text "BESS_ KNEW_ABOUT_BADBABS".
- Discuss about parallel search algorithms.

PART - B

Answer any four of the following. Each question carries 10 marks.

 $(4 \times 10 = 40)$

- Illustrate aggregate analysis of amortized analysis on stack operations and increment in a binary counter.
- For the following graph with initial capacity. Find the maximum flow using basic Ford-Fulkerson algorithm.

- Explain point value representation of polynomial s with example and also show addition and multiplication using point values:
- Write the procedural steps of the RSA public-key cryptosystem. Also, consider an RSA key set with p = 7 and q = 17 and e = 5. What value of d should be used in the secret key 7 What is the encryption of the message M = 19 ?
- 13. Write and explain Rabin-Karp string matching algorithm. Working modulo q = 13, how many spurious hit does the Rabin-Karp matcher encounter for the text T = 2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1. When looking for the pattern P = 3 1 4 1 5.
- 14. Write short notes on :
 - a) Travelling Salesman Problem.
 - b) Single source shortest path in Directed Acyclic Graph (DAG).

5

5

IV Semester M.C.A. Examination, June 2017 (CBCS)

COMPUTER SCIENCE MCA402T : Advanced Algorithms

Time: 3 Hours

Max. Marks: 70

PART-A

Answer any five of the following. Each question carries six marks.

(5×6=30)

1. Use a recursion tree to solve the recurrence

$$T(n) = 2T \left(\frac{n}{2}\right) + n.$$

2. Solve the following recurrence using substituion method

$$T(n) = 4T \left(\frac{n}{2}\right) + n.$$

- 3. Produce Euclid's algorithm to find the GCD of two integers and comment on the efficiency of the algorithm.
- 4. Prove that the system $(Z_n, +_n)$ is a abelian group.
- Produce Naive pattern matching algorithm and investigate the efficiency of the algorithm.
- 6. Explain set covering problem.
- 7. Solve the following instance of subset sum problem

$$S = \{10, 14, 15, 19\} T = 35 \epsilon = 0.3.$$

8. Explain Dynamic programming strategy. Apply it to generate Fibonacci series.

PART-B

Answer any four of the following questions. Each question carries 10 marks.
(10×4=40)

- 9. Illustrate the potential method using stack operations.
- 10. Using Bellman ford algorithm find the shortest path from the source vertex S to the remaining vertices in graph

- 11. Write Chinese remainder theorem. Also find all the integers that leave remainder 1, 2, 3 when divided by 9, 8, 7 respectively using Chinese remainder theorem.
- 12. Explain Johnson's algorithm for sparse graphs.
- 13. Explain Rabin-carp algorithm for pattern matching.

Trace the algorithm to search "aab" in "abaaab".

- 14. Write short notes on:
 - a) Flow networks.

b) DFT and FFT.

5

5

IV Semester M.C.A. Examination, June 2016 (CBCS)

COMPUTER SCIENCE

MCA 402 T: Advanced Algorithms

Time: 3 Hours

Max. Marks: 70

PART-A

Answer any five of the following. Each question carries six marks.

 $(5 \times 6 = 30)$

- 1. Explain different types of Asymptotic Notations.
- 2. Using the Master Method, solve the following recurrences:

a)
$$T(n) = 8T\left(\frac{n}{2}\right) + \theta(n^2)$$

b)
$$T(n) = 3T\left(\frac{n}{4}\right) + n \log n$$

3. Write an algorithm for single-source shortest path in DAG. Also apply the algorithm for the following graph by taking source vertex as 'S'.

- 4. Explain Max-Flow Min-Cut theorem an algorithm.
- 5. Consider an RSA key set with p = 11, q = 29, n = 319 and e = 3. What value of d should be used in the secret key? What is the encryption of the message M = 100?

3=280, (2xe) (mod 280)

P.T.O.

PG-503

- 6. Working modulo q = 11, how many spurious hits does the Rabin-Karp matcher encounter in the text T = 3141592653589793 when looking for the pattern P = 26.
- 7. Solve the following instance of the subset sum problem for $S = \{3, 34, 4, 12, 5, 2\}$ and sum = 9.
- 8. List and discuss three major constraints to be taken care of while designing a parallel algorithm.

PART-B

Answer any four of the following questions. Each carries 10 marks:

(10×4=40)

- 9. Explain aggregate analysis with stack operations and incrementing a binary counter.
- Compute all-pairs shortest paths for the following directed graph using Johnson's algorithm.

- Give the pseudocode for computing extended Euclid. Find gcd (99, 78) using extended Euclid's algorithm and show the computation steps at each level of recursion.
- 12. Explain Boyer Moore Algorithm for string Matching and trace the algorithm for the following text and pattern:
 - T: GTTATAGCTGATCGCGGCGTAGCGGCGAA
 - P: GTAGCGGCG
- 13. Explain Approximation vertex cover algorithm with neat diagram. Explain its operation through psuedocode.
- 14. Write short notes on:
 - a) String Matching with Finite Automata.
 - b) Travelling salesman problem (TSP).