Code: 041402

B.Tech. 4th Semester Exam., 2014

DIGITAL ELECTRONICS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct option from the following (any seven): 2×7=14
 - (a) A quantity having continuous wave is
 - (i) a digital quantity
 - (ii) an analog quantity
 - (iii) a binary quantity
 - (iv) a natural quantity
 - (b) The sum of 11010+01111 equals
 - (i) 101001
 - (ii) 101010
 - (iii) 110101
 - (iv) 101000

- (c) The output of a gate is low if and only if its input are HIGH. It is true for
 - (i) AND
 - (ii) XNOR
 - (iii) NOR
 - (iv) NAND
- (d) An example of a standard SOP expression is
 - (i) $\overrightarrow{AB} + \overrightarrow{ABC} + \overrightarrow{ABD}$
 - (ii) $A\overline{B}C + ACD$
 - (iii) $A\overline{B} + \overline{A}B + AB$
 - (iv) $AB\overline{C}D + \overline{A}B + \overline{A}$
- (e) To implement the expression of $\overline{ABCD} + A\overline{BCD} + A\overline{BCD}$, it takes one OR gate and
 - (i) one AND gate
 - (ii) three AND gates
 - (iii) three AND gates and four inverters
 - (iv) three AND gates and three inverters
- (f) The invalid state of an S-R latch occurs when
 - (i) S = 1, R = 0
 - (ii) S = 0, R = 1
 - K(i) S=1, R=1
 - (iv) S = 0, R = 0

<i>(g)</i>	The device used to convert a binary number to a 7-segment display format
	is
	(i) multiplexer
	(ii) encoder
	(iii) decoder
	(iv) register
(h)	An asynchronous counter differs from a
	synchronous counter in
	(i) the number of states in its sequence
	(ii) the method of clocking
	(iii) the type of flip-flop used
	(iv) the value of the modulus
(4)	A stage in a shift register consists of
	(i) a latch
	(ii) a flip-flop
	(iii) a byte of storage
	(iv) four bits of storage
<i>(i)</i>	A 32-bit data word consists of
	(i) 2 bytes
	(ii) 4 nibbles
	(iii) 4 bytes
	(iv) 3 bits and 1 nibble

2.	(a)	Make a K-map for the function	
_	_	$F = A\overline{B} + AC + A\overline{D} + AB + ABC$	5
	(b)	Express F, in standard SOP and POS	
_		form.	5
39	(c)	Minimize \dot{F} and realize the minimal	
		expression using NOR gate only.	4
3.	(a)	Prove the following algebraically:	
_		2½+2½	₂ =5
		(i) $(A+B)(A+\overline{B}) = A \oplus B$	•
		$(\overline{u}) (A+B)(A+\overline{B})(\overline{A}+B) = AB$	
_	D	Convert decimal number 75 into Grey code.	4
	(c)	Verify a two-level AND-OR gate is	
		equivalent to NAND-NAND.	5
4.	(a)	Draw a circuit diagram of an RTLEX-OR	
	1500	gate. Explain its operation.	7
	(b)	Draw a circuit diagram of DTL gate and explain it. What are fan-in and fan-out?	
		How will you increase the fan-out of the	
		gate?	7
144	K 1	3007640	

Design a full adder using only NAND gate. Design a 8 to 1 line multiplexer using 4 to 1 line multiplexer. 6. Differentiate between synchronous and asynchronous counter. Design a 4-bit synchronous up counter. Explain the following flip-flops with their diagrams and truth tables : (i) SR F/F (ii) J-K F/F (iii) D F/F (iv) T F/F Design D F/F from J-K F/F. Explain the working principle of a successive approximation ADC with the help of circuit diagram.

Find the output voltage from a 5-bit ladder D/A converter which has a digital input of 11010. Assume 0 = 0 V

- 9. Write short notes on any two of the following: 7×2=14
 - (a) Data transfer in a shift register
 - (b) ROM
 - (c) Astable multivibrator using 555
 - (d) Digital comparator

and 1 = +10 V.