S.F. ETRX III (Pw)

Digital system Design 1 RK-1242

[Total Marks: 100

.

ws-Scan Paper -3 2

Con. 3837-11.

(3 Hours)

N.B.: Question No. 1 is compulsory. Solve any four from rest six.

1.	Answer the following questions: Each question carries 5 marks. (a) Construct Hamming code for BCD 0111. Use even parity. (b) Construct an EX-OR gate using universal gates.	20
	(c) Draw the circuit of 2-input TTL NAND gate.	
	(d) Explain with example self-complementing codes	
2.	(a) Simplify the following 4 variable Boolean expression using Quine-McCluskey method $F = \Sigma m (0,1,3,7,9,15) + d(8,11)$	10
	(b) For the expression $Y = (P + Q)(Q'+R')$	
	i) Convert to standard POS	4
	ii) Reduce using K-map	4
	iii) Construct circuit using NOR gates only	2
3.	(a) Implement the following expression using IC 74138, 3:8 active low decoder and additional gates	
	$F(A,B,C,D) = \pi M (0,6,7,8,12,13,14,15)$	10
	(b)Find the reduced SOP form using K-map	5
•	 F(A,B,C,D) = ΣM (0,6,7,8,12,13,14,15) Implement using only NAND gates (c) Explain the term " noise margin" and its values for TTL and CMOS families. 	5

4.	(a)Design and explain 8 bit binary adder using IC 7483	10
- 1.	(b) Design an clocked MN flip-flop using JK flip-flop. The function table of MN flip-flop is as follows: M N Q _{n+1} 0 0 Q _n '	10
	0 1 0 1 0 1 1 1 Q _n	
5.	(a) Explain and draw MOD – 10 asynchronous counter using T- FF. Draw output waveforms and show where glitches occur.	10
	(b) A parking lot has 4 parking slots. A car requires 1 empty slot, a tempo requires 2 empty adjacent parking slots and a truck requires 3 empty adjacent parking slots. Each slot has a sensor which indicates a 1 when slot is full and indicates a 0 when slot is empty. Generate 3 outputs: car, tempo and truck which indicate which vehicle should be allowed to park.	10
6.	(a)Construct a ring counter using IC 74194 and draw the output waveforms.	10
	(b) Consider the expression $Y = AD' + BD$. Find out whether any hazard exits in the hardware implementation. If yes, eliminate the hazard.	10
7.	(b) Draw and explain a 9 - bit even parity checker using IC 74180	10
	(a) Implement the function using single IC 74151 and some gates $F = \Sigma m (1,2,4,7,10,13,14)$	10