OR

Discuss reflection of uniform plane waves by perfect Dielectric-normal incidence.

Roll	No		
------	----	--	--

EC - 402

B.E. IV Semester

Examination, December 2015

Electro-Magnetic Theory

Time: Three Hours

Maximum Marks: 70

- Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I rgpvonline.com

- 1. a) Define electric flux density.
 - b) Define potential difference.
 - Derive capacitance of 2 concentric spheres (spherical shell capacitor).
 - d) State and prove Gauss's divergence theorem? Write equation for gradient, divergence and curl for any one co-ordinate system.

OR

Give a mathematical analysis of electrostatic energy and energy density. Write Laplaces and Poisson's equation.

Unit - II

- 2. a) Define magnetic field intensity and magnetic flux density.
 - b) Define self and mutual inductance.
 - c) Explain any one application of Biot-Savart's law.
 - d) Give a mathematical analysis for solution of Laplaces equation in cylindrical co-ordinate system.

OR

Derive boundary conditions on magnetic field.

Unit - III

- 3. a) Define uniform plane waves?
 - b) What is complex poynting vector?
 - c) Discuss displacement current concept.
 - d) Derive relation for magnetic energy density. A current element I $\Delta l = 2\pi (0.6I_x 0.8I_y)$ is situated at a point (4, -2, 3). Find the incremental field ΔH at a point (1, 3, 2)?

OR

Write a note on magnetic scalar potential. A parallel polarized wave propagates from air into dielectric at Brewster angle of 75. Calculate the relative dielectric constant of the medium?

Unit - IV

- 4. a) Define polarization of waves?
 - b) Define Attenuation constant and phase constant.

- c) For a non-magnetic material, having $\epsilon_r = 2.25$, $\sigma = 10^{-4}$ s/m. Find
 - i) Loss tangent
 - ii) Attenuation constant
 - iii) Phase constant
 - iv) Intrinsic impedance for a wave having a frequency of 2.5 MHz. Assume the material to be a good dielectric.
- d) Discuss wave propagation in a lossy Dielectric medium.

OR

Give a brief mathematical analysis for the following:

- i) Linear polarisation
- ii) Circular (OR) Elliptic polarization

Unit - V

- 5. a) Define perpendicular polarization.
 - b) What is phase velocity and group velocity?
 - c) What is frequency dispersive propagation?
 - The electric field intensity in radiation field of an antenna located at the origin of a spherical co-ordinate system is

given by:
$$E = E_o \frac{\sin \theta \cos \theta}{r} \cos (\omega t - \beta r) IQ$$
, where E_o , ω and β are constants. Find

-) The magnetic field associated with this electric field.
- ii) The poynting vector
- iii) The total power radiated over a spherical surface of radius 'r' centered at the origin.