Roll No

OR

Derive electromagnetic wave equation for a conducting medium Derive vector Helmholtz equation.

Unit - V

- a) What is frequency dispersive propagation?
- b) Define phase velocity and group velocity?
- c) What is magnetic vector potential?
- d) Give mathematical analysis of Brewster's angle?

OR

Give mathematical analysis for reflection at the surface of a conductive medium of e.m. waves.

EC - 402

B.E. IV Semester

Examination, June 2016

Electro-Magnetic Theory

Time: Three Hours

Maximum Marks: 70

- te: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

- a) Write formula for divergence in curtain, cylindrical and spherical co-ordinate systems?
 - b) What is electric field intensity?
 - c) Find the work done in moving a point charge $Q = -20 \mu c$ from the origin to (4, 0, 0) m in the field

$$\vec{E} = \left(\frac{x}{2} + 2y\right) \vec{ax} + \partial |\tau \cdot \vec{ay} V| m.$$

- d) Calculate the potential at a point
 - i) Outside
 - ii) Inside a uniformly charged sphere of radius = (a).

OR

Solve Laplace's equation for the region between co-axial cones. Given at $\theta = \theta_1$, $V = V_1$ and $\theta = \theta_2$, V = 0. The cone vertices are insulated at r = 0.

Define potential function and potential difference?

Unit - II

- 2. a) Write expression for capacitance of an isolated sphere.
 - b) Derive Poisson's equation and Laplace's equation.
 - c) Calculate the potential at $r_A = 3m$ w.r.t $r_B = 9$ m due to a point charge Q = 500 PC at the origin and zero reference at infinity.
 - d) Derive expression for energy stored and energy density in a magnetic field? Calculate the magnetic flux density at the centre of a current carrying loop when the loor radius is 2 cm loop current is 1 mA and the loop is placed in air.

OR

Derive expressions for inductance of

- i) Solenoid
- ii) Toroid of circular cross-section
- iii) Toroid of rectangular cross-section
- iv) Co-axial cable.

Unit - III

- 3. a) Calculate the skin depth in copper at 10 GHz. Assume conductivity of copper σ=5.8×10⁷ mhos/m and permeability equal to that of free space?
 - b) Derive expressions for Instantaneous poynting vector.
 - Derive expressions for energy stored and energy density in static electric field.
 - d) Derive wave equations for non-conducting medium?

OR

 Give a general solution of Maxwell's equations w.r.t. uniform plane waves?

Unit - IV

- a) Calculate the phase velocity and the magnitude of the attenuation constant of plane wave at a frequency of 10 GHz in polyethene. It is given that μ = μ₀, ∈_r = 2.3 and σ = 2.56×10⁻⁴ mhos/m.
 - b) What do you mean by horizontal polarization?
 - c) If a parallel polarized electromagnetic wave is incident from air on to the surface of
 - i) Paraffin with $\mu_r = 1$, $\epsilon_r = 2.1$
 - ii) Flint glass with $\mu_r = 1$, $\epsilon_r = 10$
 - iii) Distilled water with $\mu_r = 1$, $\epsilon_r = 81$. Find the Biewster angle θ_{iB} in each of the cases.
 - d) Give mathematical analysis of elliptical polarization.

EC-402