
B.E / B.Tech (Full-Time) DEGREE END SEMESTER EXAMINATIONS, APR / MAY 2014

COMMON TO ELECTRONICS AND COMMUNICATION ENGINEERING AND BIOMEDICAL ENGINEERING
 III Semester

EC 274/ EC 9203 SIGNALS AND SYSTEMS

(Regulation - 2004/2008)
Time: 3 Hours
Answer ALL Questions
Max. Marks 100

PART-A ($10 \times 2=20$ Marks)

1. Express discrete time unit step signal interms of unit impulse signal.
2. Determine the fundamental period for the signal $x[n]$ given by $x[n]=e^{i 5 \pi n}$.
3. Let a_{k} be the Fourier series coefficient of a periodic signal $x(t)$. Write the expression for the Fourier series coefficient for the signal $x\left(t-t_{0}\right)$.
4. Express the Laplace transform for the signal $x(t)=e^{-a t} u(t)$.
5. Consider an LTI system with input $x(t)$ and with response $y(t)$ defined by the expression $y(t)=x(t)-x(t-1)$. Determine the impulse response $h(t)$ of the LTI system.
6. State Sampling theorem.
7. Consider an LTI system defined by the transfer function $\mathrm{H}(\mathrm{s})=\frac{1}{s^{2}+3 s+2}$; Determine the poles and zeros.
8. Express the z-transform for the signal $y[n]=\delta[n]-\delta[n-1]$.
9. Consider the impulse response of an LTI system as $h[n]=\delta[n]-\delta[n-1]$. Determine the response $\mathrm{y}[\mathrm{n}]$ if the input $\mathrm{x}[\mathrm{n}]$ to the LTI system is $\mathrm{u}[\mathrm{n}]$.
10. Consider the LTI system described by the transfer function $\mathrm{H}(\mathrm{z})=\frac{z^{3}+1}{z^{2}+z+1}$. State whether the system is causal or not with justification.

PART-B ($5 \times 16=80$ Marks)

11. i. Consider a system whose input $x(t)$ and output $y(t)$ are related by the following expression. $y(t)=x(t-1)-x(2-t)$. Determine whether the system satisfies the following properties with justification
(a) Memoryless
(b)Time invariant
(c) Linear
(d) Causal.
ii. Consider the signal $x(t)=e^{-2 t} u(t)$.
(a) Plot the signal $x(t)$ and $x(-t)$
(b) Determine $\mathrm{P} \infty$ and $\mathrm{E} \infty$
12. a. i. Calculate the Fourier series coefficient for the continuous time periodic signal $\mathrm{x}(\mathrm{t})=\left\{\begin{array}{ll}1, & 0<t<1 \\ -1 & 1<t<4\end{array}\right.$, with fundamental frequency $\omega=\pi / 2$.
ii. Determine the Laplace transform for the signal $x(t)=2 e^{-2 t} u(t)-4 e^{-t} u(-t)$ and plot the region of convergence.
(OR)
13. b. i. Consider a rectangular pulse signal $\mathrm{x}(\mathrm{t})=\left\{\begin{array}{ll}1, & |t|<T_{1} \\ 0, & |t|>T_{1}\end{array}\right.$. Determine its Fourier transform and plot its spectrum.
ii. Compute the Fourier transform for the signal $\mathrm{x}(\mathrm{t})=e^{-a|l|} \mathrm{u}(\mathrm{t})$ with $\mathrm{a}>0$. Plot its spectrum.

13 a. i. Let $x(t)=u(t-2)-u(t-4)$ and $h(t)=e^{-4 t} u(t)$. Compute the convolution of $x(t)$ and $h(t)$.
ii. Consider an LTI system with system function $\mathrm{H}(\mathrm{s})=\frac{s-1}{(s+1)(s-4)}$, determine the impulse response $h(t)$, if the system is causal.
(OR)
13. b. i. Consider an LTI system with input $x(t)=e^{-2 t} u(t)$ and output $y(t)=\left[e^{-t}-e^{-4 t}\right] u(t)$. Determine the transfer function $\mathrm{H}(\mathrm{s})$. Using $\mathrm{H}(\mathrm{s})$, state whether the system is causal and/or stable with justification.
ii. Let $x(t)=e^{-2 t} u(t)$ and $h(t)=u(t)$. Compute the convolution of $x(t)$ and $h(t)$

14 a. i. Compute the Fourier transform for the signal $x[n]=u[n-2]-u[n-6]$
ii. Consider the signal $\mathrm{x}[\mathrm{n}]=\left\{\begin{array}{ll}\left(\frac{1}{3}\right)^{n} \cos \left(\frac{\pi}{4} n\right), & n \leq 0 \\ 0, & n>0\end{array}\right.$, evaluate the z-transform and plot the region of convergence.
(OR)
14 b. i. Compute the Fourier transform for the signal $\mathrm{x}[\mathrm{n}]= \begin{cases}n, & -3 \leq n \leq 3 \\ 0, & \text { otherwise }\end{cases}$
ii. Consider the signal $\mathrm{x}[\mathrm{n}]=\left(\frac{1}{5}\right)^{n} u[n-3]$, evaluate the z-transform and plot the region of convergence.

15 a. i. Compute the convolution of $\mathrm{x}[\mathrm{n}]$ and $\mathrm{h}[\mathrm{n}]$ where $\mathrm{x}[\mathrm{n}]$ and $\mathrm{h}[\mathrm{n}]$ are defined by

$$
\begin{align*}
& \mathrm{x}[\mathrm{n}]=\left\{\begin{array}{lc}
1, & 3 \leq n \leq 8 \\
0, & \text { otherwise }
\end{array}\right. \\
& \mathrm{h}[\mathrm{n}]= \begin{cases}1, & 4 \leq n \leq 15 \\
0, & \text { otherwise }\end{cases} \tag{12}
\end{align*}
$$

ii. Consider the difference equation $y[n]-1 / 4 y[n-1]=x[n]$ relating the input $x[n]$ and output $y[n]$ of a causal LTI system. Determine the transfer function $H(z)$ of the system.

(OR)

15 b.Consider a causal LTI system described by the transfer function

$$
\begin{equation*}
\mathrm{H}(\mathrm{z})=\frac{\left(1+\frac{1}{4} z^{-1}\right)\left(1-2 z^{-1}\right)}{\left(1-\frac{1}{4} z^{-1}\right)\left(1+\frac{1}{2} z^{-1}\right)} \tag{8}
\end{equation*}
$$

i. Mark the poles and zeros in the z-plane and show the region of convergence and determine the impulse response $\mathrm{h}[\mathrm{n}]$.
ii. Represent the block diagram for $\mathrm{H}(\mathrm{z})$ using direct form II realization.

