Name :
 Roll No.
 \qquad
 Unesh
 Invigilator's Signature :
 \qquad
 CS/ B.TECH(NEW)BME/ ECE/ EE/ EIE/ PWE/ ICE/ EEE/ SEM-3/ M(CS)-301/ 2012-13 2012
 NUMERICAL METHODS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) In the problem "Find the area of a circle having radius 2 ; given $\pi=3.14$ ", the kind of error of the approximation $3 \cdot 14$ for π is
a) Truncation error
b) Round-off error
c) Inherent error
d) Relative error.
ii) The number 9.6506531 when round-off to 4 places of decimal will give
a) 9.6506
b) 9.6507
c) 9.6505
d) none of these.

iv) Which of the following is ture ?
a) $E=1-\Delta$
b) $E=1+\Delta$
c) $\Delta=E+1$
d) $E=\Delta^{-1}$.
v) It cannot be recommended to construct an interpolation polynomial for a function $f(x)$ if
a) $\quad f(x)$ is not a polynomial
b) $\quad f(x)$ is not derivable somewhere
c) $f(x)$ has abrupt changes
d) graph of $f(x)$ is unknown.
vi) The degree of precision of Simpson's $\frac{1}{3}$ rd rule is
a) 1
b) 2
c) 3
d) 4 .
vii) In evaluating $\int_{\mathrm{a}}^{\mathrm{b}} f(x) d x$, the error in Trapezoidal rule is of order
a) h^{3}
b) $\quad h^{4}$
c) $\quad h^{2}$
d) h.

a) null matrix
b) upper-triangular matrix
c) identity matrix
d) diagonally-dominant matrix.
ix) If $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+y$ and $y(0)=1$, then $y(0.02)$ according to Euler's method is [$h=0.01$]
a) 1.02
b) $\quad 1.04$
c) 1.00
d) 0.99 .
x) The finite difference method is used to solve
a) a system of ordinary differential equation
b) a Boundary Value Problem
c) a partial differential equation
d) a system of transcendental equation.
xi) The local truncation error in Euler's method for the solution of ODE of first order is
a) $O\left(h^{2}\right)$
b) $\frac{h^{2}}{2} y^{\prime \prime}\left(x_{m}+\theta h\right)$
c) $h^{2} y^{\prime \prime}\left(x_{m}+\theta h\right)$
d) none of these.
xii) One root of the equation $x^{2}+2 x-2=0$ lies between
a) 1 and 2
b) 0 and 0.5
c) 0.5 and 1
d) none of these.
[Turn over

2. Find $f(5)$ from the following data :

x	0	2	3	4	7	8
$f(x)$	4	26	58	112	466	668

3. Find the value of $\int_{0} \sqrt{1-0.162 \sin ^{2} x} \mathrm{~d} x$ using

Simpson's $\frac{1}{3}$ rd rule taking six equal subintervals.
4. Using Newton-Raphson method find $\sqrt[4]{32}$ correct upto 4 places of decimal.
5. Find the inverse of the following matrix using Gauss Elimination method.

$$
\left(\begin{array}{ccc}
1 & 2 & 6 \\
2 & 5 & 15 \\
6 & 15 & 46
\end{array}\right)
$$

6. Use Fourth order Runge-Kutta method to find an approximate value of $y(0.2)$ given that $y(0)=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=1+y^{2}$.

7. a) Round off 31.5218 to one significant figure.
b) What is the percentage error in approximating $\frac{4}{3}$ to 1.3333 ? 2
c) Prove that $E \equiv e^{h D}$, where E, h and D are the shift operator, the step length and the differential operator respectively. Hence, show that $h D \equiv \sin h^{-1}(u \delta)$, where, μ and δ have their usual meanings. $3+2$
d) Define interpolation and extrapolation. Deduce the Newton's forward interpolation formula. $2+5$
8. a) Find by Lagrange's formula, the interpolation polynomial which corresponds to the following data :

$x:$	0	1	2	3	4
$f(x):$	3	6	11	18	27

b) Find a real root of the equation $x^{3}-2 x-5=0$ by using Regula-Falsi method.
c) Derive Simpson's one-third rule from Newton-Cote's quadrature formula.
9. a) Solve the system of linear equation by LU Factorization Method :

$2 x-6 y+8 z=24$
$5 x+4 y-3 z=2$
$3 x+y+2 z=16$
b) Compute y (0.5), by Milne's predictor-corrector method from $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 e^{x}-y$,
given that $y(0.1)=2.0100, y(0.2)=2.0401$, $y(0.3)=2.0907, y(0.4)=2.1621$.
10. a) Find the root of the equation $x \tan x=1.28$, that lies in the interval (0,1), correct to 4 decimal places, using Bisection method.
b) Find the solution of the following differential equation by Euler's method for $x=1$ by taking $h=0.2$, $\mathrm{d} y / \mathrm{d} x=x+y$ with $y=1$ when $x=0$.
c) \quad Show that $(1+\Delta)(1-\nabla) \equiv 1$.
CS/ B.TECH(NEW)BME/ECE/EE/EIE/PWE/ICE/EEE/SEM-3/ M(CSF-301/2012-13
11. a) Obtain the Newton's Divide Difference intexpolating
polynomial, hence find $f(3)$:

$x:$	0	1	2	4	5	6
$f(x):$	1	14	15	5	6	19

b) Solve the following system of equations using Gauss elemination method :

$$
\begin{gathered}
-x+y+10 z=35.61 \\
x+10 y+z=20.08 \\
10+y-x=11.19
\end{gathered}
$$

