Con. 3499-11.

T.E COMP V (Per) Theory of Computer Occerce

RK-2088

(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four questions from remaining six questions.
- (3) Draw suitable diagrams wherever necessary.
- (4) Assume suitable data, if necessary.
- 1. (a) Differentiate between-

(i) NFA and DFA

(ii) Moore and Mealy Machines.

17

5

- (b) Design a Mealy machine for the language (0 + 1)*(00 + 11) and convert it to a 10 Moore machine.
- 2. (a) Design a DFA to accept the following languages over the alphabet {0,1} 10
 - (i) {w | w starts with zero and has odd length or starts with one and has even length }
 - (ii) { w | every odd position of w is 1 }
 - (b) Find a minimum state finite automata equivalent to the following automata-

	O	1
→a	b	a
b	а	С
С	d	ь
*d	d	а
е	d	t
f.	g	е
g	1	g
h	g	d

- (a) Give and explain the formal statement of Pumping Lemma for regular languages 10 and use it to prove that the following language is not regular—
 L = { aⁿb²ⁿ in > 0 }
 - (b) Convert the following NFA with epsilon moves to a minimum state DFA accepting 10 the same language:-

Con. 3499-RK-2088-11.

2

(a) Design a PDA for the language L = { WCW^R | W ε {a, b}* } 10 Design a PDA for the following grammar and test whether 010⁴ is in the language 10 defined by that PDA. S -> OBB B → OSIISIO (a) Reduce the following grammars to GNF $S \rightarrow AB$ (i) 5 A → BSB | BB | b (ii) BaAbla 5 S - AA I 1 $A \rightarrow SS \mid 1$ (b) Convert the following grammars to CNF 10 A → aBb | bBa B → aB | bB | ε (a) Design a Turing machine to accept the language L = { aⁿ bⁿ | n > = 1 } 10 (b) Design a Turing machine that computes a function f(m, n) = m + n for the addition 10 of 2 integers. 7. Write short notes on (any three) :-20 (a) Halting problem (b) Post Correspondence Problem Chomsky Hierarchy (c) Intractable Problems Greibach Theorem.