

DEPARTMENT OF COMPUTER APPLICATIONS

ADVANCED DATA STRUCTURES AND ALGORITHMS

INTRODUCTION TO ALGORITHM

Algorithm Definition:

An Algorithm is a set of well-defined instructions designed to

perform a specific set of tasks. Algorithms are used in Computer

science to perform calculations, automatic reasoning, data

processing, computations, and problem-solving.

Design and Analysis of Algorithm Definition:

Design and Analysis of Algorithm is very important for

designing algorithm to solve different types of problems in the

branch of computer science and information technology. It also

helps to design and analyze the logic on how the program will

work before developing the actual code for a program.

ANALYSIS OF ALGORITHM

The analysis is a process of estimating the efficiency of an

algorithm. There are two fundamental parameters based on

which we can analysis the algorithm:

• Space Complexity: The space complexity can be understood

as the amount of space required by an algorithm to run to

completion.

• Time Complexity: Time complexity is a function of

input size n that refers to the amount of time needed by an

algorithm to run to completion.

if there is a problem P1, then it may have many solutions,

such that each of these solutions is regarded as an algorithm. So,

there may be many algorithms such as A1, A2, A3, …, An.

Before you implement any algorithm as a program, it is better

to find out which among these algorithms are good in terms of time

and memory It would be best to analyze every algorithm

in terms of Time that relates to which one could

execute faster and Memory corresponding to which one will take

less memory.

So, the Design and Analysis of Algorithm talks about how to

design various algorithms and how to analyze them. After designing

and analyzing, choose the best algorithm that takes the least time

and the least memory and then implement it as a program in C.

Memory is relatively more flexible. We can increase the

memory as when required by simply adding a memory card. So, we

will focus on time than that of the space.

The running time is measured in terms of a particular piece

of hardware, not a robust measure. When we run the same

algorithm on a

different computer or use different programming languages, we

will encounter that the same algorithm takes a different time.

Generally, we make three types of analysis, which is as follows:

https://www.javatpoint.com/c-programs

• Worst-case time complexity: For 'n' input size, the worst-

case time complexity can be defined as the maximum amount

of time needed by an algorithm to complete its execution.

Thus, it is nothing but a function defined by the maximum

number of steps performed on an instance having an input size

of n.

• Average case time complexity: For 'n' input size, the

average-case time complexity can be defined as the average

amount of time needed by an algorithm to complete its

execution. Thus, it is nothing but a function defined by the

average number of steps performed on an instance having an

input size of n.

• Best case time complexity: For 'n' input size, the best-case

time complexity can be defined as the minimum amount of

time needed by an algorithm to complete its execution. Thus,

it is nothing but a function defined by the minimum number

of steps performed on an instance having an input size of n.

Complexity of Algorithm:

The term algorithm complexity measures how many steps are

required by the algorithm to solve the given problem. It evaluates

the order of count of operations executed by an algorithm as a

function of input data size.

To assess the complexity, the order (approximation) of the

count of operation is always considered instead of counting the

exact steps.

O(f) notation represents the complexity of an algorithm,

which is also termed as an Asymptotic notation or "Big O" notation.

Here the f corresponds to the function whose size is the same as

that of the input data. The complexity of the asymptotic

computation O(f) determines in which order the resources such as

CPU time, memory, etc. are consumed by the algorithm that is

articulated as a function of the size of the input data.

The complexity can be found in any form of the following

forms. It is nothing but the order of constant, logarithmic, linear

and so on, the number of steps encountered for the completion of

a particular algorithm. To make it even more precise, we often

call the complexity of an algorithm as "running time".

Typical Complexities of an Algorithm:

• Constant Complexity:

It imposes a complexity of O(1). It undergoes an execution of

a constant number of steps like 1, 5, 10, etc. for solving a

given problem. The count of operations is independent of the

input data size.

• Logarithmic Complexity:

It imposes a complexity of O(log(N)). It undergoes the

execution of the order of log(N) steps. To perform operations

on N elements, it often takes the logarithmic base as 2.

• Linear Complexity:

https://www.javatpoint.com/cpu-full-form

It imposes a complexity of O(N). It encompasses the same

number of steps as that of the total number of elements to

implement an operation on N elements.

• Quadratic Complexity:

It imposes a complexity of O(n2). For N input data size, it

undergoes the order of N2 count of operations on N number of

elements for solving a given problem.

• Cubic Complexity:

It imposes a complexity of O(n3). For N input data size, it

executes the order of N3 steps on N elements to solve a given

problem.

• Exponential Complexity:

It imposes a complexity of O(2n), O(N!), O(nk), …. For N

elements, it will execute the order of count of operations

that is exponentially dependable on the input data size.

ASYMPTOTIC NOTATIONS

Asymptotic notations are the mathematical notations used to

describe the running time of an algorithm when the input tends

towards a particular value or a limiting value. For example: In

bubble sort, when the input array is already sorted, the time

taken by the algorithm is linear i.e. the best case.

But, when the input array is in reverse condition, the

algorithm takes the maximum time (quadratic) to sort the elements

i.e. the worst case.

When the input array is neither sorted nor in reverse order,

then it takes average time. These durations are denoted using

asymptotic notations.

There are mainly three asymptotic notations:

• Big-O notation

• Omega notation

• Theta notation

Big-O Notation (O-notation):

(n) is bounded above by some constant multiple of g(n) for all

large n,

i.e., if there exist some positive constant c and some nonnegative

integer n0 such that t (n) ≤ cg(n) for all n ≥ n0

O(g(n)) = { t(n): there exist positive constants c

and n0 such that 0 ≤ t(n) ≤ cg(n) for

all n ≥ n0 }

Example:

As an example, let us formally prove one of the assertions

made in the introduction: 100n + 5 ∈ O(n2). Indeed,

100n + 5 ≤ 100n + n (for all n ≥ 5) = 101n ≤ 101n2 .

Thus, as values of the constants c and n0 required by the

definition, we can take 101 and 5, respectively.

Note that the definition gives us a lot of freedom in choosing

specific values for constants c and n0. For example, we could also

reason that 100n + 5 ≤ 100n + 5n (for all n ≥ 1) = 105n to

complete the proof with c = 105 and n0 = 1

Omega Notation (Ω-notation)

Omega notation represents the lower bound of the running

time of an algorithm. Thus, it provides the best case complexity of

an algorithm.

A function t(n) is said to be in (g(n)), denoted t(n) ∈ (g(n)), if

t(n) is

bounded below by some positive constant multiple of g(n) for all

large n, i.e., if there exist some positive constant c and some

nonnegative integer n0 such that t (n) ≥ cg(n) for all n ≥ n0.

Ω(g(n)) = { t(n): there exist positive constants c

and n0 such that 0 ≤ cg(n) ≤ t(n) for

all n ≥ n0 }

Example

Here is an example of the formal proof that n3 ∈ (n2):

n3 ≥ n2 for all n ≥

0, i.e., we can select c = 1 and n0 =

0.

Theta Notation (Θ-notation)

Theta notation encloses the function from above and below.

Since it represents the upper and the lower bound of the running

time of an

algorithm, it is used for analyzing the average-case complexity

of an algorithm.

A function t(n) is said to be in (g(n)), denoted t(n) ∈ (g(n)), if

t(n) is

bounded both above and below by some positive constant multiples

of g(n) for all large n, i.e., if there exist some positive constants c1

and c2 and some nonnegative integer n0 such that c2g(n) ≤ t(n) ≤

c1g(n) for all

n ≥ n0.

Θ(g(n)) = { t(n): there exist positive constants c1, c2

and n0 such that 0 ≤ c1g(n) ≤ t(n) ≤ c2g(n)

for all n ≥ n0 }

Example

For example, let us prove that 1/2 n(n − 1) ∈

(n2). First, we prove the right inequality (the

upper bound):

1/2 n(n − 1) = 1/2 n2 − 1/2 n ≤ 1/2 n2 for all n ≥ 0.

Second, we prove the left inequality (the lower bound):
1/2 n(n

−
1)
=

1/2

 ≥ 1/2

 = 1/4

n2 − 1/2 n

n2 − 1/2 n 1/2 n (for all

n ≥ 2) n2 .

Hence, we can select c2 = 1/4 , c1 = 1/2 , and n0 = 2.

IMPORTANCE OF EFFICIENT ALGORITHMS

In real-world applications, efficiency is very important.

 To avoid large program or application to become slow

and unresponsive.

 The efficiency of an algorithm often gets worse rapidly as

the size of the dataset increases. Big data requires us to

come up with new algorithms with good efficiency.

 To avoid delays.

 For time critical applications like weather predictions.

 Many modern businesses rely on having the fastest

algorithms, such as search and comparison engines,

medical analysis etc…

 Efficiency is only one factor in choosing or designing an

algorithm.

 For fetching results with high quality and speed.

PROGRAM PERFORMANCE MEASUREMENT

If we want to go from city "A" to city "B", there can be many

ways of doing this. We can go by flight, by bus, by train and also by

bicycle. Depending on the availability and convenience, we choose

the one which suits us. Similarly, in computer science, there are

multiple algorithms to solve a problem. When we have more than

one algorithm to solve a problem, we need to select the best one.

Performance analysis helps us to select the best algorithm from

multiple algorithms to solve a problem. When there are multiple

alternative algorithms to solve a problem, we analyze them and

pick the one which is best suitable for our requirements. The formal

definition is as follows...

Algorithm performance Definition:

Performance of an algorithm is a process of making

evaluative judgement about algorithms. Thus performance of an

algorithm means predicting the resources which are required to an

algorithm to perform its task.

That means when we have multiple algorithms to solve a

problem, we need to select a suitable algorithm to solve

that problem. We compare algorithms with each other which are

solving the same problem, to select the best algorithm. To

compare algorithms, we use a set of parameters or set of elements

like memory required by that algorithm, the execution speed of

that algorithm, easy to understand, easy to implement, etc.,

Generally, the performance of an algorithm depends on the

following elements...

• Whether that algorithm is providing the exact solution for the

problem?

• Whether it is easy to understand?

• Whether it is easy to implement?

• How much space (memory) it requires to solve the problem?

• How much time it takes to solve the problem? Etc.,

When we want to analyse an algorithm, we consider only the space

and time required by that particular algorithm and we ignore all

the remaining elements.

Performance analysis of an algorithm definition:

Performance analysis of an algorithm is the process of

calculating space and time required by that algorithm.

Performance analysis of an algorithm measures:

 Space required to complete the task of that algorithm (Space

Complexity). It includes program space and data space

 Time required to complete the task of that algorithm (Time

Complexity)

RECURRENCES: THE SUBSTITUTION METHOD – THE

RECURSION - TREE METHOD

Many algorithms are recursive in nature. When we analyze

them, we get a recurrence relation for time complexity. We get

running time on an input of size n as a function of n and the running

time on inputs of smaller sizes. For example in Merge Sort, to sort

a given array, we divide it in two halves and recursively repeat

the process for the two halves. Finally we merge the results. Time

http://geeksquiz.com/merge-sort/

complexity of Merge Sort can be written as T(n) = 2T(n/2) + cn.

There are many other algorithms like Binary Search, Tower of

Hanoi, etc.

There are mainly three ways for solving recurrences.

• Substitution Method: We make a guess for the solution and then

we use mathematical induction to prove the guess is correct

or incorrect.

For example consider the recurrence T(n) = 2T(n/2) + n

We guess the solution as T(n) = O(nLogn). Now we use

induction to prove our guess.

We need to prove that T(n) <= cnLogn. We can assume that it

is true for values smaller than n.

T(n) = 2T(n/2) + n

<= 2cn/2Log(n/2) + n

= cnLogn - cnLog2 + n

= cnLogn - cn + n

<= cnLogn

• Recurrence Tree Method: In this method, we draw a

recurrence tree and calculate the time taken by every level of

tree. Finally, we sum the work done at all levels. To draw the

recurrence tree, we start from the given recurrence and keep

drawing till we find a pattern among levels. The pattern is typically

a arithmetic or geometric series.

For example consider the recurrence relation

T(n) = T(n/4) + T(n/2) + cn2

cn2

/ \

T(n/4) T(n/2)

If we further break down the expression T(n/4) and T(n/2),

we get following recursion tree.

c
n
2

/ \

c(n2)/16 c(n2)/4

/ \ / \ T(n/16) T(n/8) T(n/8) T(n/4)

Breaking down further gives us following

cn2

/ \

c(n2)/16 c(n2)/4

/ \ / \

c(n2)/256 c(n2)/64 c(n2)/64 c(n2)/16

/ \ / \ / \ / \

To know the value of T(n), we need to calculate sum of tree nodes

level by level. If we sum the above tree level by level, we get the

following series

T(n) = c(n^2 + 5(n^2)/16 + 25(n^2)/256) +

The above series is geometrical progression with ratio 5/16.

To get an upper bound, we can sum the infinite

series. We get the sum as (n2)/(1 - 5/16) which is

O(n2)

• Master Method: Master Method is a direct way to get the

solution. The master method works only for following type of

recurrences or for recurrences that can be transformed to

following type.

T(n) = aT(n/b) + f(n) where a >= 1 and b > 1

There are following three cases:

• If f(n) = O(nc) where c < Logba then T(n) = Θ(nLogb
a)

• If f(n) = Θ(nc) where c = Logba then T(n) = Θ(ncLog n)

• If f(n) = Ω(nc) where c > Logba then T(n) = Θ(f(n))

How does this work?

Master method is mainly derived from recurrence tree

method. If we draw recurrence tree of T(n) = aT(n/b) + f(n), we

can see that the work done at root is f(n) and work done at all

leaves is Θ(nc) where c is Logba. And the height of recurrence tree

is Logbn.

In recurrence tree method, we calculate total work done. If

the work done at leaves is polynomially more, then leaves are the

dominant part, and our result becomes the work done at leaves

(Case 1). If work done at leaves and root is asymptotically same,

then our result becomes height multiplied by work done at any

level (Case 2). If work done at

root is asymptotically more, then our result becomes work done

at root (Case 3).

Examples of some standard algorithms whose time complexity

can be evaluated using Master Method.

Merge Sort: T(n) = 2T(n/2) + Θ(n). It falls in case 2 as c is 1 and

Logba] is also 1. So the solution is Θ(n Logn).

http://geeksquiz.com/merge-sort/

Binary Search: T(n) = T(n/2) + Θ(1). It also falls in case 2 as c is

0 and Logba is also 0. So the solution is Θ(Logn).

DATA STRUCTURES AND ALGORITHMS

Data Structure Definition:

A data structure is a particular way of organizing data in a

computer so that it can be used efficiently. Data Structures is

about rendering data elements in terms of some relationship, for

better organization and storage.

Types of Data Structures:

• Primitive Data Structures (Built-In Data Structures)

Primitive data structures are those which are predefined way of

storing data by the system. And the set of operations that can be

performed on these data are also predefined. Primitive data

structures are

• char

• int

• float

• double

• pointer

Characters are internally considered as int and floats also falls

under double and the predefined operations are addition,

subtraction, etc.

• Non-primitive Data Structures (User Defined Data Structures)

http://geeksquiz.com/binary-search/

Non-primitive data structures are more complicated data structures

and they are derived from primitive data structures. Non-primitive

data structures are used to store large and connected data. Some

example of Non-primitive data structures are:

• Linked List

• Tree

• Graph

• Stack

• Queue etc.

All these data structures allow us to perform different

operations on data. We select these data structures based on

which type of operation is required.

Algorithm Definition:

An algorithm is a finite set of unambiguous instructions,

written in order, to accomplish a certain predefined task or

obtaining a required output for any legitimate input in a finite

amount of time. Algorithm is not the complete code or program, it

is just the core logic of a problem.

Data Definition:

Data can be defined as an elementary value or the collection of

values, for example, student's name and its id are the data about the

student.

Time Complexity & Space Complexity:

Time complexity is a function describing the amount of time an

algorithm takes in terms of the amount of input to the algorithm.

The time is calculated or measured by counting the number of key

operations such as comparisons in sorting algorithm.

Space complexity is a function describing the amount of memory

(space) an algorithm takes in terms of the amount of input to

the algorithm. Space needed by an algorithm is equal to the sum of

the following two components

A fixed part that is a space required to store certain data and

variables (i.e. simple variables and constants, program size etc.),

that are not dependent of the size of the problem.

A variable part is a space required by variables, whose size is

totally dependent on the size of the problem. For example,

recursion stack space, dynamic memory allocation etc.

Good Program = Good Algorithm + Good Data Structures

