BE ETRX VIT (Per) VLSI Design

Con. 3447-11.

(REVISED COURSE)

RK-3336

(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four out of remaining six questions.
- (3) Assume suitable data wherever necessary.
- 1. (a) Draw the stick diagram and mask layout using λ based design rules for a depletion load (10) nMOS inverter with pull up to pull down ratio as 4:1 (i.e. $\frac{Z_{pa}}{Z_{pd}} = \frac{4}{1}$).
 - (b) Assuming that the work function of the metal is smaller than that of a p-type semiconductor, pictorially depict the cross sectional view and energy band diagram for an n-channel MOS transistor under the following conditions:
 - (i) When the metal and semiconductor are shorted
 - (ii) Flat band condition
 - (iii) When the surface is depleted of carriers
 - (iv) Onset of inversion at the surface
 - (v) When the semiconductor surface is accumulated with majority carriers.
- (a) Explain the complete fabrication process steps for a CMOS inverter using p-well process with the help of cross sectional diagrams for all important masking steps.
 - (b) Calculate the threshold voltage V_{TD} at V_{SB} = 0, for a polysilicon gate n-channel MOS (10) transistor, with the following parameters:

Substrate doping, $N_A = 10^{16}/$ cm³ Polysilicon gate doping, $N_D = 2 \times 10^{20}/$ cm³ Gate oxide thickness, $T_{OX} = 500$ A⁹. Oxide interface fixed charge density, $N_{OX} = 4 \times 10^{10}/$ cm²

Also calculate the ion implant dose necessary to change the threshold voltage from V_{T0} to V_{T} = -1 V and comment on the result.

3. (a) Implement the following Boolean function in CMOS logic:

(10)

$$Y = A(D+E)+B.C$$

Draw the stick diagram for the circuit.

(b) Derive an expression for the inverter threshold voltage (switching voltage) of a CMOS inverter. Calculate the (w/L) ratios of the nMOS and pMOS transistor in the CMOS inverter circuit with the following parameters:

NMOS
$$V_{Tn} = 0.6 \text{ V}, \ \mu_{ncox} = 60 \ \mu\text{A/V}^2,$$

PMOS $V_{Tp} = -0.8 \text{ V}, \ \mu_{pcox} = 20 \ \mu\text{A/V}^2,$
 $V_{DO} = 3 \text{ V}, \ V_{TH} = 1.5 \text{ V}$

- (a) Compare Resistive load, Depletion load and Enhancement load inverters. Also write their (10) merits, demerits and applications.
 - (b) Design a half adder circuit using primitive gates. Using the half adder blocks designed & required primitive gates, design a full adder circuit. Write verilog codes for both the circuits designed and a Test bench to test the functionality of the full adder.
- (a) Explain various sources of power dissipation in digital CMOS circuits with the help of appropriate diagrams and expressions.
 - (b) Consider an n-channel MOSFET with W = 15 μ m, L = 2 μ m and C_{ox} = 6.9 X 10⁻⁸ F/cm². Assume that the drain current in the non saturation region for V_{Ds} = 0.10 is I₀ = 35 μ A at V_{Gs} = 1.5 V and I₀ = 35 μ A at V_{Gs} = 2.5 V. Determine the inversion carrier mobility and the threshold voltage of the n-MOSFET.
- 6. (a) Explain constant voltage and constant field scaling in detail with their merits and demerits. (10)
 - (b) Design a clocked SR latch using CMOS technology and write verilog code for the circuit. (10)
- 7. Write short notes on any three: (20)
 - (a) CMOS latch up & its prevention
 - (b) Buried and Butting contacts
 - (c) Ion implantation
 - (d) MOS capacitance.