Code No. 3023

FACULTY OF ENGINEERING

B.E. 3/4 (Civil) I-Semester (Supplementary) Examination, June/July, 2011

THEORY OF STRUCTURES—I

Time: Three Hours]

[Maximum Marks: 75

Answer ALL questions from Part A. Answer any FIVE questions from Part B. Assume missing data, if any, suitably.

PART—A (Marks: 25)

- 1. State Castigliano's theorem—I.
- 2. What is internal redundancy? Give an example of such type of truss.
- 3. Define shear centre.
- 4. Differentiate between symmetrical bending and unsymmetrical bending with an example.
- 5. Draw the neat sketch of a knee-braced truss. What are the functions of knee-braces?
- 6. Define stiffness of a beam. Develop an expression for the stiffness of a beam AB which is simply supported at A while the other far end B is fixed. Use standard notations.
- 7. Determine the vertical deflection of the loaded truss shown in Fig. 1 at joint C. Take $E = 2 \times 10^5 \text{ N/mm}^2$ and $A = 100 \text{ mm}^2$ for all the members.

Fig. 1

8. Analyse the continuous beam shown in Fig. 2 using slope-deflection method. Draw BMD.

Fig. 2

HVS-846

(Contd.)

3

9. Define rotation factor in Kani's method. What is the total value of rotation factor at a joint in a beam ?

10. What is Mohr's correction? Explain briefly.

3

PART—B (Marks: 5×10=50)

11. Analyse the portal frame, shown in Fig. 3, using slope-deflection method. Draw BMD.

Fig. 3

12. Analyse the continuous beam, shown in Fig. 4, using moment distribution method. Also draw the bending moment and shear force diagrams. EI is uniform.

Fig. 4

13. Using Kani's method, analyse and draw BMD for the continuous beam shown in Fig. 5.

Fig. 5

HVS--846

2

(Contd.)

14. For the redundant truss, shown in Fig. 6, determine the forces in all the members if BC is short in length by 6 mm and is forced into the position. Take $A = 100 \text{ mm}^2$ and $E = 2 \times 10^5 \text{ N/mm}^2$ for all the members.

Fig. 6

- 15. (a) What is shear flow? Explain briefly.
 - (b) Locate the shear centre for a channel section having a vertical web 400 mm \times 16 mm and flanges 100 mm \times 16 mm, as shown in Fig. 7.

16. Analyse the portal frame, shown in Fig. 8, using Kani's method. Draw BMD.

Fig. 8

HVS--846

3

(Contd.)

17. Determine graphically the horizontal displacement of the roller support for the truss shown in Fig. 9. The deformations in mm are marked against each member, positive sign indicating elongation.

Fig. 9