

CS/B.TECH (OLD)/SEM-2/EE-201/2011
2011
BASIC ELECTRICAL ENGINEERING
Time Allotted: 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) Thevenin's theorem can be applied to networks containing
a) passive elements only
b) active elements only
c) linear elements only
d) all of these.
ii) The number of circuits required to solve a network using superposition theorem is equal to the number of
a) nodes
b) branches
c) voltage sources
d) voltage plus current sources.
iii) The force of attraction produced by an electromagnet is a function of
a) $\quad B^{2}$
b) A
c) μ_{0}
d) all of these.
iv) With an increase in frequency, inductive reactance increases linearly \& the current
a) remains constant
b) decreases inversely
c) increases inversely
d) increases linearly.
v) In a parallel RC circuit, the equivalent admittance of the circuit is
a) $\frac{1}{R}+j \omega c$
b) $\frac{1}{R}-j \omega c$
c) $\quad R+\frac{1}{j \omega c}$
d) $R+j \omega c$.
vi) In a three - phase system, the phase sequence in used to indicate the
a) amplitude of the phase voltages
b) frequency of the phase voltages
c) order in which the phase voltages attain their maximum values
d) phase angle between phase voltages.

vii) In a transformer, which of the following can not be classified as core loss ?
a) Hysteresis loss
b) Eddy current loss
c) Copper loss due to current in the windings
d) All of these.
viii) What is done to balance the $m m f$ setup due to the secondary current?
a) The primary voltage is increased
b) The core flux is increased immediately
c) The current in the primary is increased
d) All of these.
ix) Which of the following types of winding is used for the stator of a three - phone induction motor ?
a) Lap winding
b) Wave winding
c) distributed a.c. star/delta connected
d) concentrated.
x) In the star-delta starter the voltage applied across the stator winding is
a) equal to the supply voltage
b) $\sqrt{3}$ times the supply voltage
c) $1 / \sqrt{3}$ time the supply voltage
d) $2 / \sqrt{3}$ times the supply voltage.
xi) The flux produced by the field winding in a d.anachine
a) rotates at a synchronous speed with respect to the stator
b) rotates at a speed less than the synchronous speed with respect to the stator
c) rotates at a speed higher than the synchronous speed with respect to stator.
d) is stationary with respect to stator.
xii) When compared with an electric circuit which of the following parameters in a magnetic circuit are analogous ?
a) Current \& flux
b) Electric field strength \& magnetic field strength
c) Voltage drop \& mmf drop
d) All of these.

GROUP - B
 (Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Define the following terms.
a) Electric flux
b) Electric flux density
c) Electric potential
d) Electric potential difference
e) Dielectric strength.

Uresh
3. Define average value of alternating quantity \&derive its expression for sinusoidal current.
4. Define the efficiency $\&$ voltage regulation of a transformer at a given load.
5. Derive the relationship between the line current \& phase current, line voltage $\&$ phase voltage for a balanced three phase star connected inductive load connected across three phase supply.
6. Explain the principle of operation of a three - phase induction motor.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $\quad 3 \times 15=45$
7. a) Find $V_{D F} \& V_{A G}$ for the following circuit :

b) Apply the Thevenin's theorem to calculate current flowing through the $A B$ branch for the following circuit :

$$
7+8
$$

2002
8. a) A 50 Hz , sinusoidal voltage applied to a singte phase circuit has RMS value of 200 V . Its value at $t=0$ is 200 $\sqrt{2}$ volt positive. The current drawn by the circuit is 5 amp (RMS) \& lags behind the voltage by one sixth of a cycle. Write the expression for the instantaneous value of voltage $\&$ current. Sketch their waveforms.
b) Two circuits $A \& B$ are connected in parallel to a 115 V , 50 HZ supply. The total current taken by the combination is 10 amp at unity power factor. Circuit A consists of 10Ω resistance $\& 200 \times 10-6 \mathrm{~F}$ capacitor connected in series. Circuit B consists of a resistance $\&$ an inductance in series. Detemine the following data for circuit B : (i) current (ii) power factor (iii) impedance and (iv) resistance.
$5+10$
9. a) A 55 kVA single phase transformer has primary winding of 460 turns \& secondary winding of 160 turns. The input side of transformer is supplied with voltage of 2500 V , 50 Hz supply. Calculate secondary voltage, primary $\&$ secondary full load current $\&$ maximum value of flux.
b) The following is the test data for a $50 \mathrm{kVA}, 1100 / 110 \mathrm{~V}$ transformer : OC test performed on the 110 V side : $110 \mathrm{~V}, 1.0 \mathrm{~A}, 100 \mathrm{~W}$.

SC test performed on the 1100 V side : 80 V , full load curent, 800 W . Draw the equivalent circuit of the transformer referred to high voltage side. $5+10$
10. A balanced star connected load is supplied from a symmetrical three-phase $400 \mathrm{~V} \& 50 \mathrm{~Hz}$ system. The current
in each phase is $30 \mathrm{amp} \&$ lags 30° behind the phase voltages. Find : (i) Phase voltage (ii) Resistance- $\&$ reactance per phase (iii) load inductance per phase (iv) total power consumed (v) Reactive volt ampere (vi) total volt amp. Draw the phasor diagram showing the current \& voltage. 15
11. a) Deduce \& explain the speed torque characteristics of shunt \& serves motors.
b) A shunt machine, connected to a 200 V mains, has an armature resistance (including brushes) of $0.15 \Omega \&$ the resistance of the field circuit is 100Ω. Find the ratio of its speed as a generator to its speed as a motor, the line current in each case being 75A.
$8+7$
12. a) An iron ring has its mean length of flux path as 60 cm , its cross-sectional area as $15 \mathrm{~cm}^{2} \&$ its relative permeability is 500 . Find the current required to be passed through the coil of 300 turns wound uniformly arround it, to produce a flux density of 1.2 T . What would be the flux density with the some current, if the iron ring is replaced by an air core ?
b) Two identical coils are P \& Q, each with 1500 turns are placed in parallel planes near each other, so that 70% of the flux produced by current in the coil P links with coil Q. If a current of 4 A is passed through any one coil, it produces a flux of 0.04 m Wb linking with itself. Find the self inductance of the two coils, the mutual inductance \& co-efficient of coupling between them.

$$
8+7
$$

