53 EC NOV 2015

M 27887

Third Semester B. Tech. Degree (Reg./Sup./Imp. - Including Part Time) **Examination, November 2015**

(2007 Admn. Onwards)

PT2K6/2K6 CE/ME/EE/EC/AE 1/CS/IT 301 : ENGINEERING MATHEMATICS - II

Time: 3 Hours

Max. Marks: 100

PART-A

- 1. Test the convergence of $\frac{1}{123} + \frac{3}{234} + \frac{5}{345} + \cdots$
- 2. Obtain the Maclaurin's series expansion of log (1 + x).
- Find the rank of the matrix

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \\ -1 & 2 & 2 \end{bmatrix}.$$

- 4. Solve x + y + z = 3, x + 2y + 3z = 4, x + 4y + 9z = 6 using Gauss elimination method.
- 5. Find the work done when a force $\overline{F} = (x^2 y^2 + x) \overline{i} (2xy + y) \overline{j}$ moves a particle in the xy plane from (0, 0) to (1, 1) along the parabola $y = x^2$.
- 6. Using Green's theorem evaluate $\oint (x^2-y^2)dx + (2y-x)dy$ where C is boundary of the region in the 1st quadrant bounded by $y = x^2$ and $y = x^3$.
- 7. Show that the set of all ordered pairs of real numbers is a vector space over R.
- 8. Show that T: $R^2 \rightarrow R$ given by T(x, y) = 3x 5y is a linear transformation from $R^2 \rightarrow R$. $(8 \times 5 = 40)$

M 27887

PART-B

- 9. If $y = (\sin^{-1}x)^2$ prove that $(1 x^2) y_{n+2} x (2n + 1) y_{n+1} n^2 y_n = 0$.
- 10. Test the convergence of $x \frac{x^2}{\sqrt{2}} + \frac{x^3}{\sqrt{3}} \frac{x^4}{\sqrt{4}} + \dots$ and find the interval of convergence.
- 11. Find the eigen values and eigen vectors of $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$.

- 12. Investigate the values of λ and μ such that the equations x + y + z = 6; x + 2y + 3z = 10 and $x + 2y + \lambda z = \mu$ have i) no solution (ii) a unique solution (iii) infinite number of solutions.
- 13. Verify Green's theorem for the integral $\int xydx + x^2dy$ where C is the boundary of the area enclosed by $y = x^2$ and y = x.

OR

- 14. Verify divergence theorem for $\overline{F} = y\overline{i} + x\overline{j} + z^2\overline{k}$ over the cylindrical region bounded by $x^2 + y^2 = a^2$, z = 0 & z = h.
- 15. a) Find a homogeneous system whose solution set w is generated by $\{(1, -2, 0, 3), (1, -1, -1, 4), (1, 0, -2, 5)\}.$
 - b) Check whether $w = \{(a, b, c)/a, b, c \in Q\}$ is a subspace of R^3 .

OR

- 16. a) Find T(a, b) where $T: \mathbb{R}^2 \to \mathbb{R}^3$ is defined by T(1, 2) = (3, 2, 1) T(3, 4) = (6, 5, 4).
 - b) Let w be generated by the polynomials $v_1 = t^3 2t^2 + 4t + 1$; $v_2 = 2t^3 3t^2 + 9t 1$ $v_3 = t^3 + 6t - 5$; $v_4 = 2t^3 - 5t^2 + 7t + 5$. Find the basis and dimension of w.

 $(15 \times 4 = 60)$