← ~i

Sixth Semester B.E. Degree Examination, Dec.09/Jan.10 Compiler Design

Max. Marks:100 Time: 3 hrs.

> Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

- Explain a language processing system, with a block diagram. (08 Marks)
 - Explain the concept of input buffering in the lexical analysis. (06 Marks)
 - c. Write the transition diagram to recognize the token relop. (Corresponding to relational operators in a language). (06 Marks)
- What is left-recursion? Eliminate left recursion from the following grammar:

 $E \rightarrow E + T/T$; $T \rightarrow T*F/F$; $F \rightarrow (E)/id$

(06 Marks)

Obtain the predictive parsing table for the following grammar:

 $S \rightarrow iEtSS'/a$; $S' \rightarrow eS/ \in$;

 $E \rightarrow b$

(14 Marks)

Obtain LR(O) items for the following grammar:

 $S \rightarrow L = R/R$; $L \rightarrow *R/id$; $R \rightarrow L$

(08 Marks)

- Obtain first and follow symbols for the grammar shown in Q3 (a) and obtain SLR parsing table. Is the grammar SLR? (12 Marks)
- Given the following grammar:

 $S \rightarrow CC$;

 $C \rightarrow cC/d$

Construct sets of LR(1) items.

(12 Marks)

Construct canonical LR(1) parsing table. Construct LALR parsing tables for the grammar shown in Q4 (a) using LR(1) items.

(08 Marks)

PART - B

- a. Explain the concept of syntax directed translation, with examples. (06 Marks)
 - Define inherited and synthesized attributes.
 - c. Give SDD of a simple desk calculator.

(04 Marks)

(04 Marks)

d. Write the annotated parse tree for 3*5+4n.

(06 Marks)

- Draw the DAG for the arithmetic expression, a + a*(b-c)+(b-c)*d. Show the steps for constructing the DAG. (10 Marks)
 - What are three address codes? Explain different ways of representing three address codes, with examples. (10 Marks)
- What is an activation record? Explain the purpose of each item in the activation record, with example. (08 Marks)
 - Distinguish between static scope and dynamic scope.

(04 Marks)

- c. What do you mean by calling sequence? Explain the actions performed during, i) function ii) return. (08 Marks)
- Explain the main issues in code generation.

(10 Marks)

b. For the following program segment:

for
$$i = 1$$
 to 10 do

for
$$j = 1$$
 to 10 do

$$a[i, j] = 0.0$$

for i = 1 to 10 do

$$a[i, i] = 1.0$$

generate intermediate code and identify basic blocks.

(10 Marks)