BELETRX MI (RED) 26/11/12 FILLER DESIGN

25 2nd half-12-00 JP

Con. 8390-12.

KR-1029

(3 Hours)

Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four questions from remaining six questions.
- (3) Assume suitable data wherever necessary.
- 1. (a) Give difference between Butterworth. Chebyshev and elliptic filters. 5
 - (b) Describe basic principles of working of switched capacitor filter with example. 5
 - (c) What is adaptive filter, explain with the help of suitable example. 5
 - (d) Explain multirate signal processing. Why antialiasing / antiimaging filter required? 5
- 2. (a) Design an analog bandpass filter for following specificatios:—
 - (i) Passband 200 rad/s 800 rad/s
 - (ii) Stopband 0 rad/s 100 rad/s and

1600 rad/s onwards

- (iii) Passband attenuation 3dB
- (iv) Stopband attenuation 10 dB
- (v) Chebysher filter.
- 3. Design a Butterworth, digital lowpass filter for following specifications. Plot pole-zero 20 plot also. Use bilinear transformation (BLT) method:
 - (i) Passband

(b) Explain basic Weiner filter.

- 0 1 KHz
- (ii) Stopband
- 3 KHz onwards
- (iii) Passband attenuation 2.3 dB
- (iv) Stopband attenuation 18 dB
- (v) Sampling frequency 12 KHz
- (vi) Low-pass (ilter
- (vii) Plot pole-zero plot of analog filter only.
- 4. (a) What is inductance simulation, explain.

5

5

(b) Realize/synthesize following passive network using synthetic (simulated) inductor.

- (c) Explain Leap frog realization technique with suitable example.
- (d) Realize following passive network using FDNR (frequency dependent negative resistor).

5

5

6

- 5. (a) Design a FIR filter for $\delta_p = 0.01$, $\delta_s = 0.1$, $W_p = 0.2$, $W_s = 0.6$ using any suitable 10 window.
 - (b) Design a frequency sampling filter for following specification $|H(k)| = \{1, 1, 0, 0, 0, 1\}$. 10
- 6. (a) For i\p sampling rate of 50 KHz and output sampling rate of 1 KHz, give 2-stage 10 decimation scheme. Compare the filter order required for antialising filters of two stage implementation with single stage implementation. Comment on the results.
 - (b) Explain with suitable example polyphase interpolation, comment/compare with single 10 phase interpolation.
- 7. Write short notes on (a) and (b). Attempt any three:
 - (a) MMSE criterion in adaptive filter
 - (b) LMS and RLS algorithm in adaptive filtering
 - (c) Design an active lowpass, second order filter for $W_n = 1$ KHz and Q = 0.707.
 - (d) What is subband conding and quadrature mirror filtering, explain.