
1

P. R. ENGINEERING COLLEGE

Vallam, Thanjavur - 613 403.

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

CS2253-COMPUTER ORGANIZATION AND
ARCHITECTURE

Prepared By

S.JANCY SICKORY DAISY

 Assistant

Professor/CSE

2

(Common to CSE & IT)

CS 2253 COMPUTER ORGANIZATION AND

ARCHITECTURE

 L T P C

 3 0 0 3

UNIT I BASIC STRUCTURE OF COMPUTERS 9

Functional units – Basic operational concepts – Bus structures – Performance and

metrics – Instructions and instruction sequencing – Hardware – Software Interface –

Instruction set architecture – Addressing modes – RISC – CISC. ALU design – Fixed

point and floating point operations.

UNIT II BASIC PROCESSING UNIT 9

Fundamental concepts – Execution of a complete instruction – Multiple bus organization

– Hardwired control – Micro programmed control – Nano programming.

UNIT III PIPELINING 9

Basic concepts – Data hazards – Instruction hazards – Influence on instruction sets –

Data path and control considerations – Performance considerations – Exception

handling.

UNIT IV MEMORY SYSTEM 9

Basic concepts – Semiconductor RAM – ROM – Speed – Size and cost – Cache

memories – Improving cache performance – Virtual memory – Memory management

requirements – Associative memories – Secondary storage devices.

UNIT V I/O ORGANIZATION 9

Accessing I/O devices – Programmed Input/Output -Interrupts – Direct Memory Access

– Buses – Interface circuits – Standard I/O Interfaces (PCI, SCSI, USB), I/O devices and

processors.

 TOTAL: 45 PERIODS

TEXT BOOK:

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, “Computer Organization”, Fifth

Edition, Tata McGraw Hill, 2002.

3

UNIT I - BASIC STRUCTURE OF COMPUTERS

Computer Organization:

It refers to the operational units and their interconnections that realize the

architectural specifications. It describes the function of and design of the various units of

digital computer that store and process information.

Digital computer systems consist of three distinct units. These units are as follows: Input

unit Central Processing unit Output unit these units are interconnected by electrical cables

to permit communication between them. This allows the computer to function as a

system.

Computer Architecture:

 It is concerned with the structure and behaviour of the computer.

 It includes the information formats, the instruction set and techniques for

addressing memory.

Computer hardware:

 Consists of electronic circuits, displays, magnetic and optical storage media,

electromechanical equipment and communication facilities.

1. Functional Units

Digital computer systems consist of three distinct units. These units are as follows:

Input unit Central Processing unit Output unit these units are interconnected by

electrical cables to permit communication between them. This allows the

computer to function as a system. Input Unit A computer must receive both

data and program statements to function properly and be able to solve problems.

The method of feeding data and programs to a computer is accomplished by an

input device. The brain of a computer system is the central processing unit

(CPU). The CPU processes data transferred to it from one of the various input

devices. It then transfers either an intermediate or final result of the CPU to one or

more output devices.

 A computer consists of 5 main parts.

 Input

 Memory

 Arithmetic and logic

 Output

 Control Units

 Input unit accepts coded information from human operators, from

electromechanical devices such as keyboards, or from other computers over

digital communication lines.

 The information received is either stored in the computers memory for later

reference or immediately used by the arithmetic and logic circuitry to

perform the desired operations.

4

 The processing steps are determined by a program stored in the memory.

 Finally the results are sent back to the outside world through the output unit.

 All of these actions are coordinated by the control unit.

 The list of instructions that performs a task is called a program.

 Usually the program is stored in the memory.

 The processor then fetches the instruction that make up the program from

the memory one after another and performs the desire operations.

 Fig: Basic Functional units of a Computer

1.1 Input Unit:

 Computers accept coded information through input units, which read the

data.

 Whenever a key is pressed, the corresponding letter or digit is automatically

translated into its corresponding binary code and transmitted over a cable to

either the memory or the processor.

Some input devices are

 Joysticks

 Trackballs

 Mouses

 Microphones (Capture audio input and it is sampled & it is converted

into digital codes for storage and processing).

1.2.Memory Unit:

 It stores the programs and data.

 There are 2 types of storage classes

 Primary

 Secondary

Primary Storage:

 It is a fast memory that operates at electronic speeds.

 Programs must be stored in the memory while they are being

executed.

5

 The memory contains large no of semiconductor storage

cells.

 Each cell carries 1 bit of information.

 The Cells are processed in a group of fixed size called Words.

 To provide easy access to any word in a memory,a distinct

address is associated with each word location.

 Addresses are numbers that identify successive locations.

 The number of bits in each word is called the word length.

 The word length ranges from 16 to 64 bits.

 There are 3 types of memory. They are

o RAM(Random Access Memory)

o Cache memory

o Main Memory

RAM:

Memory in which any location can be reached in short and fixed amount of time

after specifying its address is called RAM.

Time required to access 1 word is called Memory Access Time.

Cache Memory:

The small, fast, RAM units are called Cache. They are tightly coupled with

processor to achieve high performance.

Main Memory:

The largest and the slowest unit is called the main memory.

1.3. ALU:

Most computer operations are executed in ALU.

 Consider a example,

 Suppose 2 numbers located in memory are to be added. They are brought

into the processor and the actual addition is carried out by the ALU. The sum may then be

stored in the memory or retained in the processor for immediate use.

Access time to registers is faster than access time to the fastest cache unit in

memory.

1.4. Output Unit:

Its function is to send the processed results to the outside world. eg.Printer

Printers are capable of printing 10000 lines per minute but its speed is

comparatively slower than the processor.

1.5. Control Unit:

6

 The operations of Input unit, output unit, ALU are co-ordinate by the control

unit.

 The control unit is the Nerve centre that sends control signals to other units

and senses their states.

 Data transfers between the processor and the memory are also controlled by

the control unit through timing signals.

 The operation of computers are,

 The computer accepts information in the form of programs and data

through an input unit and stores it in the memory.

 Information stored in the memory is fetched, under program control

into an arithmetic and logic unit, where it is processed.

 Processed information leaves the computer through an output unit.

 All activities inside the machine are directed by the control unit.

2. BASIC OPERATIONAL CONCEPTS:

 The data/operands are stored in memory. The individual instruction are

brought from the memory to the processor, which executes the specified operation.

Eg:1

Instructions are fetched from memory and the operand at LOC A is fetched. It is then added

to the contents of R0, the resulting sum is stored in Register R0.

Eg:2

 Transfer the contents of memory location A to the register R1.

Eg:3

Add the contents of Register R1 & R0 and places the sum into R0.

Fig: Connection between Processor and Main Memory

 Add LOC A ,R1

 Load LOC A, R1

 Add R1 ,R0

7

 Instruction Register(IR)

 Program Counter(PC)

 Memory Address Register(MAR)

 Memory Data Register(MDR)

Instruction Register (IR):

 It holds the instruction that is currently being executed.

 It generates the timing signals.

Program Counter (PC):

It contains the memory address of the next instruction to be fetched for execution.

Memory Address Register (MAR):

It holds the address of the location to be accessed.

Memory Data Register (MDR):

 It contains the data to written into or read out of the address location.

 MAR and MDR facilitates the communication with memory.

Operation Steps:

8

 The program resides in memory. The execution starts when PC is point to the first

instruction of the program.

 MAR read the control signal.

 The Memory loads the address word into MDR. The contents are transferred to

Instruction register. The instruction is ready to be decoded & executed.

Interrupt:

 Normal execution of the program may be pre-empted if some device requires urgent

servicing.

 Eg...Monitoring Device in a computer controlled industrial process may detect a

dangerous condition.

 In order to deal with the situation immediately, the normal execution of the current

program may be interrupted & the device raises an interrupt signal.

 The processor provides the requested service called the Interrupt Service

Routine(ISR).

 ISR save the internal state of the processor in memory before servicing the interrupt

because interrupt may alter the state of the processor.

 When ISR is completed, the state of the processor is restored and the interrupted

program may continue its execution.

2. BUS STRUCTURES:

Bus structure and multiple bus structures are types of bus or computing. A bus

is basically a subsystem which transfers data between the components of a

Computer components either within a computer or between two computers. It

connects peripheral devices at the same time. A Bus may be lines or wires or one

bit per line.The lines carry data or address or control signal.

 Fig: Single Bus Structure

There are 2 types of Bus structures. They are

Single Bus Structure

Multiple Bus Structure

http://www.blurtit.com/q515033.html
http://www.blurtit.com/q515033.html
http://www.blurtit.com/q515033.html

9

3.1.Single Bus Structure:

- A Single bus structure is very simple and consists of a single server. A bus canno t

span multiple cells. And each cell can have more than one buses.

- Published messages are printed on it. There is no messaging engine on Single bus

structure.

- It allows only one transfer at a time.

- It costs low.

- It is flexible for attaching peripheral devices.

- Its Performance is low.

3.2.Multiple Bus Structure:

- A multiple Bus Structure has multiple inter connected service integration buses and

for each bus the other buses are its foreign buses.

- It allows two or more transfer at a time.

- It costs high.

- It provides concurrency in operation.

- Its Performance is high.

4. SOFTWARE:

Computer software, or just software is a general term used to describe the role that

computer programs, procedures and documentation play in a computer system.

Software Characteristics

• Software is developed and engineered.

• Software doesn't "wear-out".

• Most software continues to be custom built

System Software is a collection of programs that are executed as needed to perform

function such as,

 Receiving & Interpreting user commands.

 Entering & editing application program and storing them as files in secondary

Storage devices.

 Managing the storage and retrieval of files in Secondary Storage devices.

 Running the standard application such as word processor, games, and spreadsheets

with data supplied by the user.

 Controlling I/O units to receive input information and produce output results.

 Translating programs from source form prepared by the user into object form.

 Linking and running user-written application programs with existing standard

library routines.

Software is of 2 types. They are

 Application program

 System program

Application Program:

http://www.blurtit.com/q515033.html

10

Application software allows end users to accomplish one or more specific (not
directly computer development related) tasks. It is written in high level programming
language(C,C++,Java,Fortran). The programmer using high level language need not know the

details of machine program instruction.

Typical applications include:

 industrial automation

 business software

 computer games

 quantum chemistry and solid state physics software

 telecommunications (i.e., the internet and everything that flows on it)

 databases

 educational software

 medical software

System Program:(Compiler,Text Editor,File)

Compiler:

It translates the high level language program into the machine language program.

Text Editor:

It is used for entering & editing the application program.

System software Component ->OS(OPERATING SYSTEM)

Operating System :

It is a large program or a collection of routines that is used to control the sharing of

and interaction among various computer units.

Functions of OS:

 Assign resources to individual application program.

 Assign memory and magnetic disk space to program and data files.

 Move the data between the memory and disk units.

 Handles I/O operation.

Fig: User Program and OS routine sharing of the process

11

Steps:

1. The first step is to transfer the file into memory.

2. When the transfer is completed, the execution of the program starts.

3. During time period ‘t0’ to ‘t1’ , an OS routine initiates loading the application

program from disk to memory, wait until the transfer is complete and then passes the

execution control to the application program & print the results.

4. Similar action takes place during ‘t2’ to ‘t3’ and ‘t4’ to ‘t5’.

5. At ‘t5’, Operating System may load and execute another application program.

6. Similarly during ‘t0’ to ‘t1’ , the Operating System can arrange to print the

previous program’s results while the current program is being executed.

7. The pattern of managing the concurrent execution of the several application

programs to make the best possible use of computer resources is called the multi-

programming or multi-tasking.

4.1. PERFORMANCE:

For best performance, it is necessary to design the compiler, machine instruction set

and hardware in a co-ordinate way.

Elapsed Timethe total time required to execute the program is called the elapsed time.

 It depends on all the units in computer system.

Processor TimeThe period in which the processor is active is called the processor time.

 It depends on hardware involved in the execution of the instruction.

12

Fig: The Processor Cache

A Program will be executed faster if the movement of instruction and data between

the main memory and the processor is minimized, which is achieved by using the Cache.

Processor clock:

ClockThe Processor circuits are controlled by a timing signal called a clock.

Clock CycleThe cycle defines a regular time interval called clock cycle.

Where, PLength of one clock cycle.

Basic Performance Equation:

Where, TPerformance Parameter

 RClock Rate in cycles/sec

 NActual number of instruction execution

 SAverage number of basic steps needed to execute one machine instruction.

To achieve high performance,

 N,S<R

Pipelining and Superscalar operation:

Clock Rate,R =1/P

T = (N*S)/R

13

PipeliningA Substantial improvement in performance can be achieved by overlapping

the execution of successive instruction using a technique called pipelining.

Superscalar Execution It is possible to start the execution of several instruction in every

clock cycles (ie)several instruction can be executed in parallel by creating parallel paths.

This mode of operation is called the Superscalar execution.

Clock Rate:

There are 2 possibilities to increase the clock rate(R).They are,

 Improving the integrated Chip(IC) technology makes logical circuits faster.

 Reduce the amount of processing done in one basic step also helps to reduce the

clock period P.

Instruction Set: CISC AND RISC:

RISC stands for Reduced Instruction Set Computer. The ISA is composed of

instructions that all have exactly the same size, usually 32 bits. Thus they can be

pre-fetched and pipelined successfully. All ALU instructions have 3 operands which are

only registers. The only memory access is through explicit

LOAD/STORE instructions.

Thus A = B + C will be assembled as:
LOAD R1,A
LOAD R2,B

ADD R3,R1,R2

STORE C,R3

Although it takes 4 instructions we can reuse the values in the registers.

To make all instructions the same length the number of bits that are used for the opcode

is reduced. Thus less instruction are provided.

The older architecture is called CISC (Complete Instruction Set Computer).

The primary goal of CISC architecture is to complete a task in as few lines of

assembly as possible. This is achieved by building processor hardware that is capable of

understanding and executing a series of operations. For this particular task, a CISC

processor would come prepared with a specific instruction (we'll call it "MULT"). When

executed, this instruction loads the two values into separate registers, multiplies the

operands in the execution unit, and then stores the product in the appropriate register.

Thus, the entire task of multiplying two numbers can be completed with one instruction:

MULT 2:3, 5:2

MULT is what is known as a "complex instruction." It operates directly on the

computer's memory banks and does not require the programmer to explicitly call any

loading or storing functions. It closely resembles a command in a higher level

14

language. For instance, if we let "a" represent the value of 2:3 and "b" represent the value of

5:2, then this command is identical to the C statement "a = a *

The Complex instruction combined with pipelining would achieve the best

performance.

It is much easier to implement the efficient pipelining in processor with simple

instruction set.

Compiler:

COM Compiler

 Translated into

Functions of Compiler:

 The compiler re-arranges the program instruction to achieve better performance.

 The high quality compiler must be closely linked to the processor architecture to

reduce the total number of clock cycles.

5. MEMORY LOCATION AND ADDRESSES:

 The memory consists of many millions of storage cells, each of which can store a bi

of information having value 0 or 1.

 The group of ‘n’ bits is referred as ‘word of information’ and ‘n’ is called the word

length.

 The word length ranges from 16 to 64 bits.(ie) if the word length of a computer is

32 bits , a single word can store a 32 bit 2’s complement number or four ASCII

characters.

 A unit of 8 bits is called a byte.

 Accessing the memory to store or retrieve the items of information requires the

distinct address or names.

 It ranges from 0 to 2
k
 -1.

Where, 2
k
 It indicates the address space of the computer.

5.1. Memory words n bits

High level

Language Program

Machine

instruction

Simple Instruction set

RISC CISC

15

 First word

 Second word

 I-th word

 Last word

5.2. Byte Addressability:

Bit 0 or 1

Byte8 bits

Word4 bytes

It is impractical to assign distinct address to individual bit locations in memory. The

most practical assignment is to have successive address refer to successive byte locations in

the memory.

Fig: A Signed Integer

16

5.3.Big Endian and Little Endian Assignment:

There are 2 ways in which the byte address can be assigned across words.

Big-Endian Format:

It is used when lower byte address are used for the most significant bit (leftmost

bytes).

Little-Endian Format:

It is used when lower byte address are used for the less significant bit (rightmost

bytes).

.

In both cases , byte addresses 0,4,8,…… are taken as the addresses of successive

words in the memory and are the addresses used when specifying memory read and write

operations for words.

5.4.Word Alignment:

Word locations have aligned addresses. Words are said to be aligned in memory, if

they begin at a byte address ie. Multiple of the number of bytes in a word.

17

For practical reasons associated with manipulating binary coded addresses, the

number of words in a word is a power of 2.

Words that can’t begin at arbitrary byte locations are said to be unaligned addresses.

Accessing Numbers, Characters and Character Strings:

 Numbers are accessed by their word address.

 Character is accessed by their byte locations.

 For character string, the beginning of the String is indicated by giving the address of

the byte containing first character.

 Successive byte locations contain successive characters of the string.

There are 2 ways to indicate the length of the string. They are,

 Special Control Character with the meaning of ‘End Of String’. Eg.Hai\0

 Separate memory word locations or processor register can contain a number of

indications of the length of the String in bytes.

6. MEMORY OPERATIONS:

Both the program instructions and data are stored in the memory.

Load:

 The Load operation transfers a copy of a specific memory location to the processor.

 The memory contents remain unchanged.

 To start load operation, the processor send the address of the desired location to the

memory and request its contents be read.

Word length Addresses

16 0,2,4….

32 0,4,8…..

64 0,8,16….

 Memory

 Operation

 Load Store

18

 The Memory sends the data stored at that address and sends them to the processor.

Store:

 The Store operation transfers the item of information from the processor to the

specific memory location and destroying the former contents of that location.

 The processor sends the address of the desired location to the memory; together

with data to be written into that location.

7. INSTRUCTION AND INSTRUCTION SEQUENCING:

A computer must have instruction capable of performing the following operations. They

are,

 Data transfer between memory and processor register.

 Arithmetic and logical operations on data.

 Program sequencing and control.

 I/O transfer.

7.1. Register Transfer Notation:

The possible locations in which transfer of information occurs are,

 Memory Location

 Processor register

 Registers in I/O sub-system.

Location Hardware Binary

Address

Eg Description

Memory LOC,PLACE,A,VAR2 R1[LOC] The contents of memory

location are transferred

to. the processor register.

Processor R0,R1,…. [R3][R1]+[R2] Add the contents of

register R1 &R2 and

places .their sum into

register R3.It is

.called Register Transfer

Notation.

I/O Registers DATAIN,DATAOUT Provides Status

information

7.2. Assembly Language Notation:

AssemblyLanguage

Format

Description

19

Move LOC,R1 Transfers the contents of memory location to the processor

register R1.

Add R1,R2,R3 Add the contents of register R1 & R2 and places their sum

into register R3.

7.3. Basic Instruction Types:

Instruction

Type

Syntax Eg Description

Three Address Operation

Source1,Source2,Destination

Add A,B,C Add values of variable

A ,B & place the result

into c.

Two Address Operation Source,Destination Add A,B Add the values of A,B

& place the result into

B.

One Address Operation Operand Add B Content of

accumulator add with

content of B.

7.4. Instruction Execution and Straight–line Sequencing:

Instruction Execution:

There are 2 phases for Instruction Execution. They are,

 Instruction Fetch

 Instruction Execution

Instruction Fetch:

The instruction is fetched from the memory location whose address is in PC.This is

placed in IR.

Instruction Execution:

Instruction in IR is examined to determine whose operation is to be performed.

Program execution Steps:

 To begin executing a program, the address of first instruction must be placed in PC.

 The processor control circuits use the information in the PC to fetch & execute

instructions one at a time in the order of increasing order.

20

 This is called Straight line sequencing. During the execution of each instruction, the

PC is incremented by 4 to point the address of next instruction.

Fig: Program Execution

7.5.Branching:

 The Address of the memory locations containing the n numbers are symbolically

given as NUM1,NUM2…..NUMn.

 Separate Add instruction is used to add each number to the contents of register R0.

21

 After all the numbers have been added,the result is placed in memory location

SUM.

Fig: Straight Line Sequencing Program for adding ‘n’ numbers

Using loop to add ‘n’ numbers:

 Number of enteries in the list ‘n’ is stored in memory location M.Register R1 is

used as a counter to determine the number of times the loop is executed.

 Content location M are loaded into register R1 at the beginning of the program.

 It starts at location Loop and ends at the instruction.Branch>0.During each pass,the

address of the next list entry is determined and the entry is fetched and added to R0.

• It reduces the contents of R1 by 1 each time through the loop.

 A conditional branch instruction causes a branch only if a specified condition is

satisfied.

Decrement R1

Branch >0 Loop

22

Fig: Using loop to add ‘n’ numbers:

7.6. Conditional Codes:

Result of various operation for user by subsequent conditional branch instruction is

accomplished by recording the required information in individual bits often called

Condition code Flags.

Commonly used flags:

 N(Negative)set to 1 if the result is –ve ,otherwise cleared to 0.

 Z(Zero) set to 1 if the result is 0 ,otherwise cleared to 0.

 V(Overflow) set to 1 if arithmetic overflow occurs ,otherwise cleared to 0.

 C(Carry)set to 1 if carry and results from the operation ,otherwise cleared to 0.

8. ADDRESSING MODES:

The different ways in which the location of an operand is specified in an instruction is

called as Addressing mode.

Generic Addressing Modes:

23

 Immediate mode

 Register mode

 Absolute mode

 Indirect mode

 Index mode

 Base with index

 Base with index and offset

 Relative mode

 Auto-increment mode

 Auto-decrement mode

8.1. Implementation of Variables and Constants:

Variables:

The value can be changed as needed using the appropriate instructions.

There are 2 accessing modes to access the variables. They are

 Register Mode

 Absolute Mode

Register Mode:

The operand is the contents of the processor register.

The name(address) of the register is given in the instruction.

Absolute Mode(Direct Mode):

 The operand is in new location.

 The address of this location is given explicitly in the instruction.

Eg: MOVE LOC,R2

The above instruction uses the register and absolute mode.

The processor register is the temporary storage where the data in the register are accessed

using register mode.

The absolute mode can represent global variables in the program.

 Mode Assembler Syntax Addressing Function

 Register mode Ri EA=Ri

Absolute mode LOC EA=LOC

Where EA-Effective Address

Constants:

 Address and data constants can be represented in assembly language using Immediate

Mode.

Immediate Mode.

24

The operand is given explicitly in the instruction.

Eg: Move 200 immediate ,R0

It places the value 200 in the register R0.The immediate mode used to specify the value of

source operand.

In assembly language, the immediate subscript is not appropriate so # symbol is used.

It can be re-written as

Move #200,R0

Assembly Syntax: Addressing Function

Immediate #value Operand =value

9.2. Indirection and Pointers:

Instruction does not give the operand or its address explicitly.Instead it provides

information from which the new address of the operand can be determined.This address is

called effective Address(EA) of the operand.

Indirect Mode:

 The effective address of the operand is the contents of a register .

 We denote the indirection by the name of the register or new address given in the

instruction.

Fig: Indirect Mode

 Add (R1),R0

 …

 Operand

Address of an operand(B) is stored into R1 register.If

we want this operand,we can get it through register

R1(indirection).

The register or new location that contains the address of an operand is called the pointer.

 Mode Assembler Syntax Addressing Function

 Add (A),R0

 B

 Operand

25

 Indirect Ri , LOC EA=[Ri] or

EA=[LOC]

9.3. Indexing and Arrays:

Index Mode:

 The effective address of an operand is generated by adding a constant value to the

contents of a register.

 The constant value uses either special purpose or general purpose register.

 We indicate the index mode symbolically as,

 X(Ri)

Where X – denotes the constant value contained in the instruction

 Ri – It is the name of the register involved.

The Effective Address of the operand is,

EA=X + [Ri]

The index register R1 contains the address of a new location and the value of X defines an

offset(also called a displacement).

To find operand,

 First go to Reg R1 (using address)-read the content from R1-1000

 Add the content 1000 with offset 20 get the result.

 1000+20=1020

 Here the constant X refers to the new address and the contents of index register

define the offset to the operand.

 The sum of two values is given explicitly in the instruction and the other is stored in

register.

Eg: Add 20(R1) , R2 (or) EA=>1000+20=1020

9.4. Relative Addressing:

Index Mode Assembler Syntax Addressing Function

Index X(Ri) EA=[Ri]+X

Base with Index (Ri,Rj) EA=[Ri]+[Rj]

Base with Index and offset X(Ri,Rj) EA=[Ri]+[Rj] +X

26

It is same as index mode. The difference is, instead of general purpose register, here we can

use program counter(PC).

Relative Mode:

 The Effective Address is determined by the Index mode using the PC in place of the

general purpose register (gpr).

 This mode can be used to access the data operand. But its most common use is to

specify the target address in branch instruction.Eg. Branch>0 Loop

 It causes the program execution to goto the branch target location. It is identified by

the name loop if the branch condition is satisfied.

Mode Assembler Syntax Addressing Function

Relative X(PC) EA=[PC]+X

9.5. Additional Modes:

There are two additional modes. They are

 Auto-increment mode

 Auto-decrement mode

Auto-increment mode:

 The Effective Address of the operand is the contents of a register in the instruction.

 After accessing the operand, the contents of this register is automatically

incremented to point to the next item in the list.

Mode Assembler syntax Addressing Function

Auto-increment (Ri)+ EA=[Ri];

 Increment Ri

Auto-decrement mode:

 The Effective Address of the operand is the contents of a register in the instruction.

 After accessing the operand, the contents of this register is automatically

decremented to point to the next item in the list.

Mode Assembler Syntax Addressing Function

Auto-decrement -(Ri) EA=[Ri];

 Decrement Ri

10. ASSEMBLY LANGUAGE:

When writing programs for a specific computer,such words are normally replaced

by acronym called mnemonics such as MOV ,ADD , INC and BR.

27

A complete set of such symbolic names and rules constitute a programming

language is referred to as an assembly language.

The set of rules for using the mnemonics in the specification of complete instruction

is called the syntax of the language.

The programs written in assembly language can be automatically translated into

sequence of machine instruction by a program called an assembler.

The user program is called the source program. The assembled machine language

program is called the object program.

Assembler Directives:

The statements or commands are called the assembler directives, which are used by the

assembler to translate the source program into the object program.

 EQU It assigns numerical values to any name used in the program.

 Eg. SUM EQU 200

 If the assembler is to produce an object program according to this arrangement, it has to

know,

 How to interpret the names

 Where to place the instruction in the memory

 Where to place the data operands in the memory

Types of Directive:

ORIGIN DirectiveIt tells the assembler program where the memory has to place the data

block.

DATAWORD DirectiveIt is used to inform the assembler of requirement.(how many

data need in one program?).

RESERVE DirectiveAllocates the total memory needed by the program.

RETURN DirectiveIdentifies the point at which the execution of the program to be

terminated.

END DirectiveIt indicates the end of the source program.

 It includes the label START which is the address of the location at which

the execution of the program is to begin.

Assembly Language program:

It is a collection of instructions. These instructions depend on 4 fields.They are,

 Label optional eg.Loop/ Label

 Operation Which type of operation eg.SUM .MOVE

28

 Operand(s) What are the operands to be used eg.A,B

 Comment It is not used in instruction.It is used when we start the

preparation of the document.

Assembly and Execution of Program:

 A Source program witten in assembly language is stored in secondary storage

devices(magnetic disk).

 The object program must be loaded into the memory of the computer before it is

executed.

Loader:

A Loader is system software that is used to fetch the input operations needed to transfer the

machine language program from the disk into a specified place in memory. Then the

information is stored into the main memory using assembler and then it is translated into

object form(byte code or opcode).

Types of Assembler:

There are 2 types of assembler. They are,

One pass assembler

Two pass assembler

One pass assembler:

 It is used to create the symbol table, which contains only variables used in the

program.

 It is used to scan the program only one time.

Two pass assembler:

 Here the symbol table contains the variables and the original values for those

variables.

 It is used to scan the program for two times.

 Two pass assembler can overcome the demerits of One pass assembler and it is

most commonly used.

 The assembler can detect and report syntax errors. Other programming errors are

find out by the system software debugger program and the user must able to find the

error.

Number Notation:

Eg: To add 93 value to the register R

Decimal: ADD #93,R1 #(immediate mode)

29

Hexa-Decimal: ADD #$5D,R1 $(used to represent/assign hexadecimal value to R1)

Binary : ADD # % 01011101,R1 % used to represent/assign hexadecimal value to R1

THE ARITHMETIC AND LOGIC UNIT

The ALU is the part of the computer that actually performs arithmetic and logical

operations on data.

Fig: All inputs and outputs

Multiplication

More complicated than addition

• Accomplished via shifting and addition

More time and more area

Signed Multiplication

30

The easiest way to deal with signed numbers is to first convert the multiplier and

multiplicand to positive numbers and then remember the original sign. It turns out that

the last algorithm will work with signed numbers provided that when we do the shifting

steps we extend the sign of the product.

Speeding up multiplication (Booth’s Algorithm)

The way we have done multiplication so far consisted of repeatedly scanning the

multiplier, adding the multiplicand (or zeros) and shifting the result accumulated.

Observation:

if we could reduce the number of times we have to add the multiplicand that would make

the all process faster

Booth’s Algorithm

Observation: If besides addition we also use subtraction, we can reduce the number of

consecutives additions and therefore we can make the multiplication faster.

This requires to “recode” the multiplier in such a way that the number of consecutive 1s

in the multiplier (indeed the number of consecutive additions we should have done) are

reduced.

The key to Booth’s algorithm is to scan the multiplier and classify group of bits into the

beginning, the middle and the end of a run of 1s

31

32

Division

Even more complicated can be accomplished via shifting and addition/subtraction

More time and more area we will look at 3 versions based on grade school algorithm

0011 | 0010 0010 (Dividend)

Negative numbers: Even more difficult There are better techniques, we won’t look at

them

33

34

Floating point numbers (a brief look)

We need a way to represent

• Numbers with fractions, e.g., 3.1416

• Very small numbers, e.g., 0.000000001

• Very large numbers, e.g., 3.15576 x 109

Representation

• Sign, exponent, significand: (–1)sign x significand x 2exponent

• More bits for significand gives more accuracy

• More bits for exponent increases range

IEEE 754 floating point standard

• Single precision: 8 bit exponent, 23 bit significand

• Double precision: 11 bit exponent, 52 bit significand

Floating point add/subtract

To add/sub two numbers

• We first compare the two exponents
• Select the higher of the two as the exponent of result

• Select the significand part of lower exponent number and shift it right by the amount

35

equal to the difference of two exponent

• Remember to keep two shifted out bit and a guard bit

• Add/sub the signifand as required according to operation and signs of operands

• Normalize significand of result adjusting exponent

• Round the result (add one to the least significant bit to be retained if the first bit being

thrown

away is a 1

• Re-normalize the result

Floating point multiply

To multiply two numbers

• Add the two exponent (remember access 127 notation)

• Produce the result sign as exor of two signs

• Multiply significand portions

• Results will be 1x.xxxxx… or 01.xxxx….

• In the first case shift result right and adjust exponent

• Round off the result

• This may require another normalization step

Floating point division

To divide two numbers

• Subtract divisor’s exponent from the dividend’s exponent (remember access 127

notation)

• Produce the result sign as exor of two signs

• Divide dividend’s significand by divisor’s significand portions

• Results will be 1.xxxxx… or 0.1xxxx….

• In the second case shift result left and adjust exponent

• Round off the result

• This may require another normalization step

36

 UNIT II - BASIC PROCESSING UNIT

Basic fundamental concepts

Execution of one instruction requires the following three steps to be

performed by the CPU:

1. Fetch the contents of the memory location pointed at by the PC. The contents of this

location are intepreted as an instruction to be executed. Hence, they are stored in the

instruction register (IR). Simbolically, this can be written as:

IR ←[[PC]]

2. Assuming that the memory is byte addressable, increment the contents of the PC by

4, that is

PC ← [PC] + 4

3. Carry out the actions specified by the instruction stored in the IR

 But, in cases where an instruction occupies more than one word, steps 1 and

2 must be repeated as many times as necessary to fetch the complete instruction.

 Two first steps are ussually referred to as the fetch phase.

 Step 3 constitutes the execution phase

Fig: Basic instruction cycle

37

 To perform fetch, decode and execute cycles the processor unit has to perform set of

operations called micro-operations.

 Single bus organization of processor unit shows how the building blocks of processor

unit are organised and how they are interconnected.

 They can be organised in a variety of ways, in which the arithmetic and logic unit and

all processor registers are connected through a single common bus.

 It also shows the external memory bus connected to memory address(MAR) and data

register(MDR).

Single Bus Organisation of processor

 The registers Y,Z and Temp are used only by the processor unit for temporary storage

during the execution of some instructions.

 These registers are never used for storing data generated by one instruction for later

use by another instruction.

 The programmer cannot access these registers.

 The IR and the instruction decoder are integral parts of the control circuitry in the

processing unit.

 All other registers and the ALU are used for storing and manipulating data.

 The data registers, ALU and the interconnecting bus is referred to as data path.

 Register R0 through R(n-1) are the processor registers.

 The number and use of these register vary considerably from processor to processor.

 These registers include general purpose registers and special purpose registers such as

stack pointer, index registers and pointers.

 These are 2 options provided for A input of the ALU.

 The multiplexer(MUX) is used to select one of the two inputs.

38

 It selects either output of Y register or a constant number as an A input for the ALU

according to the status of the select input.

 It selects output of Y when select input is 1 (select Y) and it selects a constant number

when select input is 0(select C) as an input A for the multiplier.

 The constant number is used to increment the contents of program counter.

 For the execution of various instructions processor has to perform one or more of the

following basic operations:

a) Transfer a word of data from one processor register to the another or to the

ALU.

b) perform the arithmetic or logic operations on the data from the processor

registers and store the result in a processor register.

c) Fetch a word of data from specified memory location and load them into a

processor register.

d) Store a word of data from a processor register into a specified memory

location.

1. Register Transfers

 Each register has input and output gating and these gates are controlled by

corresponding control signals.

Fig: Input and Output Gating for the Registers

 The input and output gates are nothing but the electronic swithches which can be

controlled by the control signals.

 When signal is 1, the switch is ON and when the signal is 0, the switch is OFF.

39

Implementation of input and output gates of a 4 bit register

Consider that we have transfer data from register R1 to R2

 It can be done by,

a. Activate the output enable signal of R1,R1 out=1. It places the contents

of R1 on the common bus.

b. Activate the input enable signal of R2, R2 in=1. It loads data from the

common bus into the register R2.

One-bit register

 The edge triggered D flip-flop which stores the one-bit data is connected to the

common bus through tri-state switches.

 Input D is connected through input tri-state switch and output Q is connected through

output tri-state switch.

 The control signal Rin enables the input tri-state switch and the data from common bus

is loaded into the D flip-flop in synchronisation with clock input when Rin is active.

 It is implemented using AND gate .

 The control signal Rout is activated to load data from Q output of the D flip-flop on to

the common bus by enabling the output tri-state switch.

2. Performing an arithmetic or logic operation

 ALU performs arithmetic and logic operations.

40

 It is a combinational circuit that has no internal memory.

 It has 2 inputs A and B and one output.

 It’s A input gets the operand from the output of the multiplexer and its B input gets

the operand directly from the bus.

 The result produced by the ALU is stored temporarily in register Z.

Let us find the sequence of operations required to subtract the contents of register R2 from

register R1 and store the result in register R3.

This sequence can be followed as:

a) R1,Yin

b) R2out,Select Y, sub,Zin

c) Zout,R3in

Step 1: contents from register R1 are loaded into register Y.

Step 2: contents from Y and from register R2 are applied to the A and B inputs of ALU,

subtraction is performed and result is stored in the Z register.

Step 3: The contents of Z register is stored in the R3 register.

3. Fetching a word from memory

 To fetch a word of data from memory the processor gives the address of the

memory location where the data is stored on the address bus and activates the

Read operation.

 The processor loads the required address in MAR, whose output is connected

to the address lines of the memory bus.

 At the same time processor sends the Read signal of memory control bus to

indicate the Read operation.

 When the requested data is received from the memory its stored into the MDR,

from where it can be transferred to other processor registers.

41

4. Storing a word in memory

 To write a word in memory location processor has to load the address of the

desired memory location in the MAR, load the data to be written in memory,

in MDR and activate write operation.

 Assume that we have to execute instruction Move(R2), R1.

 This instruction copies the contents of register R1 into the memory whose

location is specified by the contents of register R2.

The actions needed to execute this instruction are as follows:

a) MAR [R2]

b) MDR [R1]

c) Activate the control signal to perform the write operation.

The various control signals which are necessary to activate to perform

given actions in each step.

a) R2out, MARin

b) R1out, MDRinP

c) MARout, MDRoutM,Write

Fig: Timing diagram for MOVE(R2), R1 instruction (Memory write operation)

42

 The MDR register has 4 control signals:

 MDRinP & MDRoutP control the connection to the internal processor data bus

and signals MDRinM & MDRoutM control the connection to the memory Data bus.

 MAR register has 2 control signals.

Signal MARin controls the connection to the internal processor address bus

and signal MARout controls the connection to the memory address bus.

 Control signals read and write from the processor controls the operation Read

and Write respectively.

 The address of the memory word to be read word from that location to the

register R3,.

 It can be indicated by instruction MOVE R3,(R2).

The actions needed to execute this instruction are as follows:

a) MAR [R2]

b) Activate the control signal to perform the Read operation

c) Load MDR from the memory bus

d) R3 [MDR]

Various control signals which are necessary to activate to perform given actions in each step:

a) R2out, MARin

b) MARout, MDRinM, Read

c) MDRoutP,R3in

 Fig : MOVE R3,(R2)

43

EXECUTION OF A COMPLETE INSTRUCTION:

 Let us find the complete control sequence for execution of the instruction Add R1,(R2)

for the single bus processor.

o This instruction adds the contents of register R1 and the contents of memory

location specified by register R2 and stores results in the register R1.

o To execute bus instruction it is necessary to perform following actions:

1. Fetch the instruction

2. Fetch the operand from memory location pointed by R2.

3. Perform the addition

4. Store the results in R1.

The sequence of control steps required to perform these operations for the single bus

architecture are as follows;

1.PCout, MARin Yin, select C, Add, Zin

2. Zout, PCin, MARout , MARinM, Read

3. MDRout P,MARin

4. R2out , MARin

5. R2out , Yin,MARout , MARinM, Read

6. MDRout P, select Y, Add, Zin

 7. Zout, R1in

(i) Step1, the instruction fetch operation is initiated by loading the controls of the PC into the

MAR.

 PC contents are also loaded into register Y and added constant number by activating

select C input of multiplexer and add input of the ALU.

 By activating Zin signal result is stored in the register Z

(ii) Step2 , the contents of register Z are transferred to pc register by activating Zout and pcin

signal.

 This completes the PC increment operation and PC will now point to next instruction,

 In the same step (step2), MARout , MDR inM and Read signals are activated.

 Due to MARout signal , memory gets the address and after receiving read signal and

activation of MDR in M Signal ,it loads the contents of specified location into MDR

register.

(iii) Step 3 contents of MDR register are transferred to the instruction register(IR) of the

processor.

 The step 1 through 3 constitute the instruction fetch phase.

 At the beginning of step 4, the instruction decoder interprets the contents of the IR.

 This enables the control circuitry to activate the control signals for steps 4 through 7,

which constitute the execution phase.

44

(iv) Step 4, the contents of register R2 are transferred to register MAR by activating R2out and

MAR in signals.

(v) Step 5, the contents of register R1 are transferred to register Y by activating R1out and Yin

signals. In the same step, MARout, MDRinM and Read signals are activated.

 Due to MARout signal, memory gets the address and after receiving read signal and

activation of MDRinM signal it loads the contents of specified location into MDR

register.

(vi) Step 6 MDRoutP, select Y, Add and Zin signals are activated to perform addition of

contents of register Y and the contents of MDR. The result is stored in the register Z.

(vii) Step 7, the contents of register Z are transferred to register R1 by activating Zout and R1in

signals.

Branch Instruction

 The branch instruction loads the branch target address in PC so that PC will fetch the

next instruction from the branch target address.

 The branch target address is usually obtained by adding the offset in the contents of

PC. The offset is specified within the instruction.

 The control sequence for unconditional branch instruction is as follows:

1. PCout, MARin, Yin, SelectC, Add, Zin

2. Zout, PCin, MARout, MDRinM, Read

3. MDRoutP,IRin

4. PCout,Yin

5. Offset_field_Of_IRout,SelectY,Add,Zin

6. Zout,PCin

First 3 steps are same as in the previous example.

Step 4: The contents of PC are transferred to register Y by activating PCout and Yin

signals.

Step 5: The contents of PC and the offset field of IR register are added and result is saved in

register Z by activating corresponding signals.

Step 6: The contents of register Z are transferred to PC by activating Zout and PC in signals.

Multiple Bus Organisation:

 Single bus only one data word can be transferred over the bus in a clock cycle.

 This increases the steps required to complete the execution of the instruction.

 To reduce the number of steps needed to execute instructions, most commercial

process provide multiple internal paths that enable several transfer to take place in

parallel.

 3 buses are used to connect registers and the ALU of the processor.

 All general purpose registers are shown by a single block called register file.

45

 There are 3 ports, one input port and two output ports.

 So it is possible to access data of three register in one clock cycle, the value can be

loaded in one register from bus C and data from two register can be accessed to bus A

and bus B.

 Buses A and B are used to transfer the source operands to the A and B inputs of the

ALU.

 After performing arithmetic or logic operation result is transferred to the destination

operand over bus C.

 To increment the contents of PC after execution of each instruction to fetch the next

instruction, separate unit is provided. This unit is known as incrementer.

 Incrementer increments the contents of PC accordingly to the length of the instruction

so that it can point to next instruction in the sequence.

 The incrementer eliminates the need of multiplexer connected at the A input of ALU.

 Let us consider the execution of instruction, Add,R1,R2,R3.

 This instruction adds the contents of registers R2 and the contents of register R3 and

stores the result in R1.

 With 3 bus organization control steps required for execution of instruction Add

R1,R2,R3 are as follows:

1. PCout, MARin

2. MARout, MDRinM, Read

3. MDRoutP,IRin

4. R2out,R3out,Add,R1in

Step 1: The contents of PC are transferred to MAR through bus B.

Step 2: The instruction code from the addressed memory location is read into

MDR.

Step 3: The instruction code is transferred from MDR to IR register. At the beginning

of step 4, the instruction decoder interprets the contents of the IR.

 This enables the control circuitry to activate the control signals for step 4,

which constitute the execution phase.

Step 4: two operands from register R2 and register R3 are made available at A and B

inputs of ALU through bus A and bus B.

 These two inputs are added by activation of Add signal and result is stored in

R1 through bus C.

46

Fig:Multiple Bus Organisation

Hardwired Control

 The control units use fixed logic circuits to interpret instructions and generate

control signals from them.

 The fixed logic circuit block includes combinational circuit that generates the required

control outputs for decoding and encoding functions.

47

 Fig:Typical hardwired control

 Fig:Detailed block diagram for hardwired control

Instruction decoder

 It decodes the instruction loaded in the IR.

 If IR is an 8 bit register then instruction decoder generates 2
8
(256 lines); one for each

instruction.

 According to code in the IR, only one line amongst all output lines of decoder goes

high (set to 1 and all other lines are set to 0).

Step decoder

 It provides a separate signal line for each step, or time slot, in a control sequence.

48

Encoder

 It gets in the input from instruction decoder, step decoder, external inputs and condition

codes.

 It uses all these inputs to generate the individual control signals.

 After execution of each instruction end signal is generated which resets control step

counter and make it ready for generation of control step for next instruction.

 The encoder circuit implements the following logic function to generate Yin

 Yin = T1 + T5 . Add + T . BRANCH+…

 The Yin signal is asserted during time interval T1 for all instructions, during T5 for an

ADD instruction, during T4 for an unconditional branch instruction, and so on.

 As another example, the logic function to generate Zout signal can given by

 Zout = T2 + T7 . ADD + T6 . BRANCH +….

 The Zout signal is asserted during time interval T2 of all instructions, during T7 for an ADD

instruction, during T6 for an unconditional branch instruction, and so on.

A Complete processor

It consists of

 Instruction unit

 Integer unit

 Floating-point unit

 Instruction cache

 Data cache

 Bus interface unit

 Main memory module

 Input/Output module.

 Instruction unit- It fetches instructions from an instruction cache or from the main

memory when the desired instructions are not available in the cache.

 Interger unit – To process integer data

 Floating unit – To process floating –point data

 Data cache – The integer and floating unit gets data from data cache

 The 80486 processor has 8-kbytes single cache for both instruction and data whereas the

Pentium processor has two separate 8 kbytes caches for instruction and data.

49

 The processor provides bus interface unit to control the interface of processor to system

bus, main memory module and input/output module.

Fig:Block diagram of a complete processor

Microprogrammed Control

 Every instruction in a processor is implemented by a sequence of one or more sets of

concurrent microoperations.

 Each microoperation is associated with a specific set of control lines which, when

activated, causes that microoperation to take place.

 Since the number of instructions and control lines is often in the hundreds, the

complexity of hardwired control unit is very high.

 Thus, it is costly and difficult to design. The hardwired control unit is relatively

inflexible because it is difficult to change the design, if one wishes to correct design error or

modify the instruction set.

 Microprogramming is a method of control unit design in which the control signal

memory CM.

 The control signals to be activated at any time are specified by a microinstruction,

which is fetched from CM.

 A sequence of one or more microoperations designed to control specific operation,

such as addition , multiplication is called a microprogram.

 The microprograms for all instructions are stored in the control memory.

50

Fig: Microprogrammed Control unit

The address where these microinstructions are stored in CM is generated by

microprogram sequencer/microprogram controller.

The microprogram sequencer generates the address for microinstruction according to

the instruction stored in the IR.

The microprogrammed control unit,

- control memory

- control address register

- micro instruction register

- microprogram sequencer

51

The components of control unit work together as follows:

 The control address register holds the address of the next

microinstruction to be read.

 When address is available in control address register, the sequencer

issues READ command to the control memory.

 After issue of READ command, the word from the addressed

location is read into the microinstruction register.

 Now the content of the micro instruction register generates control

signals and next address information for the sequencer.

 The sequencer loads a new address into the control address register

based on the next address information.

Advantages of Microprogrammed control

 It simplifies the design of control unit. Thus it is both, cheaper and less error phrone

implement.

 Control functions are implemented in software rather than hardware.

 The design process is orderly and systematic

 More flexible, can be changed to accommodate new system specifications or to

correct the design errors quickly and cheaply.

 Complex function such as floating point arithmetic can be realized efficiently.

Disadvantages

 A microprogrammed control unit is somewhat slower than the hardwired control unit,

because time is required to access the microinstructions from CM.

 The flexibility is achieved at some extra hardware cost due to the control memory and

its access circuitry.

Micro instruction

 A simple way to structure microinstructions is to assign one bit position to each

control signal required in the CPU.

Grouping of control signals

 Grouping technique is used to reduce the number of bits in the microinstruction.

Gating signals: IN and OUT signals

Control signals: Read,Write, clear A, Set carry in, continue operation, end, etc.

ALU signals: Add, Sub,etc;

52

There are 46 signals and hence each microinstruction will have 46 bits.

It is not at all necessary to use all 46 bits for every microinstruction because by using

grouping of control signals we minimize number of bits for microinstruction.

Way to reduce number of bits microinstruction:

 Most signals are not needed simultaneously.

 Many signals are mutually exclusive

 e.g. only one function of ALU can be activated at a time.

 A source for data transfers must be unique which means that it should not be

possible to get the contents of two different registers on to the bus at the same

time.

 Read and Write signals to the memory cannot be activated simultaneously.

 Fig: Single Bus CPU structure with control signals

53

• 46 control signals can be grouped in 7 different groups.

• The total number of grouping bits are 17. Therefore, we minimized 46 bits

microinstruction to 17 bit microinstruction.

Techniques of grouping of control signals

 The grouping of control signal can be done either by using technique called vertical

organisation or by using technique called vertical organisation or by using technique called

horizontal organisation.

Vertical organisation

 Highly encoded scheme that can be compact codes to specify only a small number of

control functions in each microinstruction are referred to as a vertical organisation.

Horizontal organisation

 The minimally encoded scheme, in which resources can be controlled with a single

instruction is called a horizontal organisation.

Comparison between horizontal and vertical organisation

Advantages of vertical and horizontal organisation

1. Vertical approach is the significant factor,it is used to reduce the requirement

for the parallel hardware required to handle the execution of microinstructions.

2. Less bits are required in the microinstruction.

3. The horizontal organisation approach is suitable when operating speed of

computer is a critical factor and where the machine structure allows parallel

usage of a number of resources.

Disadvantages

 Vertical approach results in slower operations speed.

S.No Horizontal Vertical

1 Long formats Short formats

2 Ability to express a high degree of parallelism Limited ability to express

parallel microoperations

3 Little encoding of the control information Considerable encoding of

the control information

4 Useful when higher operating speed is desired Slower operating speeds

54

Microprogram sequencing

 The task of microprogram sequencing is done by microprogram sequencer.

 2 important factors must be considered while designing the microprogram sequencer:

a) The size of the microinstruction

b) The address generation time.

The size of the microinstruction should be minimum so that the size of control memory

required to store microinstructions is also less.

This reduces the cost of control memory.

With less address generation time, microinstruction can be executed in less time resulting

better throughout.

During execution of a microprogram the address of the next microinstruction to be executed

has 3 sources:

i. Determined by instruction register

ii. Next sequential address

iii. Branch

Microinstructions can be shared using microinstruction branching.

Consider instruction ADD src, Rdst.

The instruction adds the source operand to the contents of register Rdst and places the sum in

Rdst, the destination register.

Let us assume that the source operand can be specified in the following addressing modes:

a) Indexed

b) Autoincrement

c) Autodecrement

d) Register indirect

e) Register direct

Techniques for modification or generation of branch addresses

i. Bit-ORing

The branch address is determined by ORing particular bit or bits with

the current address of microinstruction.

Eg: If the current address is 170 and branch address is 172 then the

branch address can be generated by ORing 02(bit 1), with the current

address.

ii. Using condition variables

It is used to modify the contents CM address register directly, thus

eliminating whole or in part the need for branch addresses in

microinstructions.

55

Eg: Let the condition variable CY indicate occurance of CY = 1, and

no carry when CY = 0.

Suppose that we want to execute a SKIP_ON_CARRY

microinstruction.

It can be done by logically connecting CY to the count enable input of

Nanoprogramming

– Use a 2-level control storage organization

– Top level is a vertical format memory

» Output of the top level memory drives the address register of the bottom (nano-level)

memory

Nanomemory uses the horizontal format

» Produces the actual control signal outputs

– The advantage to this approach is significant saving in control memory

size (bits)

– Disadvantage is more complexity and slower operation (doing 2 memory accesses fro

each microinstruction)

56

Example: Supppose that a system is being designed with 200 control points and 2048

microinstructions

Assume that only 256 different combinations of control points are ever used

A single-level control memory would require 2048x200=409,600 storage bits

A nanoprogrammed system would use

» Microstore of size 2048x8=16k

» Nanostore of size 256x200=51200

» Total size = 67,584 storage bits

Nanoprogramming has been used in many CISC microprocessors

57

UNIT III PIPELINING

The Pipeline Defined

John Hayes provides a definition of a pipeline as it applies to a computer processor.

"A pipeline processor consists of a sequence of processing circuits, called segments or

stages, through which a stream of operands can be passed.

"Partial processing of the operands takes place in each segment.

"... a fully processed result is obtained only after an operand set has passed through the

entire pipeline."

In everyday life, people do many tasks in stages. For instance, when we do the laundry,

we place a load in the washing machine. When it is done, it is transferred to the dryer and

another load is placed in the washing machine. When the first load is dry, we pull it out

for folding or ironing, moving the second load to the dryer and start a third load in the

washing machine. We proceed with folding or ironing of the first load while the second

and third loads are being dried and washed, respectively. We may have never thought of

it this way but we do laundry by pipeline processing.

A Pipeline

is a series of stages, where some work is done at each stage. The work is not

finished until it has passed through all stages.

Let us review Hayes' definition as it pertains to our laundry example. The washing

machine is one "sequence of processing circuits" or a stage. The second is the dryer. The

third is the folding or ironing stage.

Partial processing takes place in each stage. We certainly aren't done when the clothes

leave the washer. Nor when they leave the dryer, although we're getting close. We must

take the third step and fold (if we're lucky) or iron the cloths. The "fully processed result"

is obtained only after the operand (the load of clothes) has passed through the entire

pipeline.

We are often taught to take a large task and to divide it into smaller pieces. This may

make a unmanageable complex task into a series of more tractable smaller steps. In the

case of manageable tasks such as the laundry example, it allows us to speed up the task

by doing it in overlapping steps.

ROLE OF CACHE MEMORY

Each stage in a pipeline is expected to complete its operation in one clock cycle.

Hence, the clock period should be sufficiently long to complete the task being performed in

any stage. If different units require different amounts of time, the clock period must allow the

longest task to be completed. A unit that completes its task early is idle for the remainder of

58

the clock period. Hence, pipelining is most effective in improving performance if the tasks

being performed in different stages require about the same amount of time.

This consideration is particularly important for the instruction fetch step, which is

assigned one clock period. The clock cycle has to be equal to or greater than the time needed

to complete a fetch operation. However, the access time of the main memory may be as much

as ten times greater than the time needed to perform basic pipeline stage operations inside the

processor, such as adding two numbers. Thus, if each instruction fetches required access to

the main memory, pipelining would be of little value.

The use of cache memories solves the memory access problem. In particular, when a

cache is included on the same chip as the processor, access time to the cache is usually the

same as the time needed to perform other basic operations inside the processor. This makes it

possible to divide instruction fetching and processing into steps that are more or less equal in

duration. Each of these steps is performed by a different pipeline stage, and the clock period

is chosen to correspond to the longest one.

PIPELINE PERFORMANCE

The pipelined processor completes the processing of one instruction in each clock

cycle, which means that the rate of instruction processing is four times that of sequential

operation. The potential increase in performance resulting from pipelining is proportional to

the number of pipeline stages. However, this increase would be achieved only if pipelined

operation could be sustained without interruption throughout program execution.

Unfortunately, this is not the case.

For a variety of reasons, one of the pipeline stages may not be able to complete its

processing task for a given instruction in the time allotted. For example, stage E in the four-

stage pipeline is responsible for arithmetic and logic operations, and one clock cycle is

assigned for this task. Although this may be sufficient for most operations, some operations,

such as divide, may require more time to complete. Figure 3.3 shows an example in which

the operation specified in instruction I2 requires three cycles to complete, from cycle 4

through cycle 6. Thus, in cycles 5 and 6, the Write stage must be told to do nothing, because

it has no data to work with. Meanwhile, the information in buffer B2 must remain intact until

the Execute stage has completed its operation. This means that stage 2 and, in turn, stages 1

are blocked from accepting new instructions because the information in B1 cannot be

overwritten. Thus, steps D4 and F5 must be postponed as shown.

Pipelined operation is said to have been stalled for two clock cycles. Normal pipelined

operation resumes in cycle 7. Any condition that causes the pipeline to stall is called a hazard.

We have just seen an example of a data hazard. A data hazard is any condition in which

either the source or the destination operands of an instruction are not available at the time

expected in the pipeline. As a result some operation has to be delayed, and the pipeline stalls.

The pipeline may also be stalled because of a delay in the availability of an

instruction. For example, this may be a result of a miss in the cache, requiring the instruction

59

to be fetched from the main memory. Such hazards are often called control hazards or

instruction hazards. The effect of a cache miss on pipelined operation is illustrated in Figure

3.4. Instruction I1 is fetched from the cache in cycle 1, and its execution proceeds normally.

However, the fetch operation for instruction I2, which is started in cycle 2, results in a cache

miss. The instruction fetch unit must now suspend any further fetch requests and wait for I2

to arrive. We assume that instruction I2 is received and loaded into buffer B1 at the end of

cycle 5. The pipeline resumes its normal operation at that point.

It gives the function performed by each pipeline stage in each clock cycle. Note that

the Decode unit is idle in cycles 3 through 5, the Execute unit is idle in cycles 4 through 6,

and the Write unit is idle in cycles 5 through 7. Such idle periods are called stalls. They are

also often referred to as bubbles in the pipeline. Once created as a result of a delay in one of

the pipeline stages, a bubble moves downstream until it reaches the last unit.

A third type of hazard that may be encountered in pipelined operation is known as a

structural hazard. This is the situation when two instructions require the use of a given

hardware resource at the same time. The most common case in which this hazard may arise is

in access to memory. One instruction may need to access memory as part of the Execute or

Write stage while another instruction is being fetched. If instructions and data reside in the

same cache unit, only one instruction can proceed and the other instruction is delayed. Many

processors use separate instruction and data caches to avoid this delay.

An example of a structural hazard is shown in Figure 3.5. This figure shows how the

load instruction

Load X(R1),R2

can be accommodated in our example 4-stage pipeline. The memory address, X+[R1], is

computed in stepE2 in cycle 4, then memory access takes place in cycle 5. The operand read

from memory is written into register R2 in cycle 6. This means that the execution step of this

instruction takes two clock cycles (cycles 4 and 5). It causes the pipeline to stall for one

cycle, because both instructions I2 and I3 require access to the register file in cycle 6. Even

though the instructions and their data are all available, the pipeline isStalled because one

hardware resource, the register file, cannot handle two operations at once. If the register file

had two input ports, that is, if it allowed two simultaneous write operations, the pipeline

would not be stalled. In general, structural hazards are avoided by providing sufficient

hardware resources on the processor chip.

It is important to understand that pipelining does not result in individual instructions

being executed faster; rather, it is the throughput that increases, where throughput is

measured by the rate at which instruction execution is completed. Any time one of the stages

in the pipeline cannot complete its operation in one clock cycle, the pipeline stalls, and some

degradation in performance occurs. Thus, the performance level of one instruction

completion in each clock cycle is actually the upper limit for the throughput achievable in a

pipelined processor organized .

60

An important goal in designing processors is to identify all hazards that may cause the

pipeline to stall and to find ways to minimize their impact. In the following sections we

discuss various hazards, starting with data hazards, followed by control hazards. In each case

we present some of the techniques used to mitigate their negative effect on performance. We

return to the issue of performance assessment in Section 3.8.

DATA HAZARDS

A data hazard is a situation in which the pipeline is stalled because the data to be

operated on are delayed for some reason. We will now examine the issue of availability of

data in some detail.

Consider a program that contains two instructions, I1 followed by I2. When this

program is executed in a pipeline, the execution of I2 can begin before the execution of I1 is

completed. This means that the results generated by I1 may not be available for use by I2. We

must ensure that the results obtained when instructions are executed in a pipelined processor

are identical to those obtained when the same instructions are executed sequentially. The

potential for obtaining incorrect results when operations are performed concurrently can be

demonstrated by a simple example. Assume that A=5, and consider the following two

operations:

A ← 3 + A

B ← 4 × A

When these operations are performed in the order given, the result is B = 32. But if they are

performed concurrently, the value of A used in computing B would be the original value, 5,

leading to an incorrect result. If these two operations are performed by instructions in a

program, then the instructions must be executed one after the other, because the data used in

the second instruction depend on the result of the first instruction. On the other hand, the two

operations

A ← 5 × C

B ← 20 + C

can be performed concurrently, because these operations are independent.

This example illustrates a basic constraint that must be enforced to guarantee correct

results. When two operations depend on each other, they must be performed sequentially in

the correct order. This rather obvious condition has far-reaching consequences.

Understanding its implications is the key to understanding the variety of design alternatives

and trade-offs encountered in pipelined computers.

The data dependency just described arises when the destination of one instruction is

used as a source in the next instruction. For example, the two instructions

Mul R2,R3,R4

Add R5,R4,R6

61

give rise to a data dependency. The result of the multiply instruction is placed into register

R4, which in turn is one of the two source operands of the Add instruction. Assuming that the

multiply operation takes one clock cycle to complete; execution would proceed as shown in

Figure 3.6. As the Decode unit decodes the Add instruction in cycle 3, it realizes that R4 is

used as a source operand. Hence, the D step of that instruction cannot be completed until the

W step of the multiply instruction has been completed. Completion of step D2 must be

delayed to clock cycle 5, and is shown as step D2A in the figure. Instruction I3 is fetched in

cycle 3, but its decoding must be delayed because step D3 cannot precede D2. Hence,

pipelined execution is stalled for two cycles.

 OPERAND FORWARDING

The data hazard just described arises because one instruction, instruction I2, is waiting

for data to be written in the register file. However, these data are available at the output of the

ALU once the Execute stage completes step E1. Hence, the delay can be reduced, or possibly

eliminated, if we arrange for the result of instruction I1 to be forwarded directly for use in

step E2.It shows a part of the processor datapath involving the ALU and the register file. This

arrangement is similar to the three-bus structure ,except that registers SRC1, SRC2, and

RSLT have been added. These registers constitute the interstage buffers needed for pipelined

operation. Registers SRC1 and SRC2 are part of buffer B2 and RSLT is part of B3. The data

forwarding mechanism is provided by the blue connection lines. The two multiplexers

connected at the inputs to the ALU allow the data on the destination bus to be selected

instead of the contents of either the SRC1 or SRC2 register.

When the instructions in Figure 3.6 are executed in the datapath of Figure 3.7, the

operations performed in each clock cycle are as follows. After decoding instruction I2 and

detecting the data dependency, a decision is made to use data forwarding. The operand not

involved in the dependency, register R2, is read and loaded in register SRC1 in clock cycle 3.

In the next clock cycle, the product produced by instruction I1 is available in register RSLT,

and because of the forwarding connection, it can be used in step E2. Hence, execution of I2

proceeds without interruption.

HANDLING DATA HAZARDS IN SOFTWARE

The data dependency is discovered by the hardware while the instruction is being decoded.

The control hardware delays reading register R4 until cycle 5, thus introducing a 2-cycle stall

unless operand forwarding is used. An alternative approach is to leave the task of detecting

data dependencies and dealing with them to the software. In this case, the compiler can

introduce the two-cycle delay needed between instructions I1 and I2 by inserting NOP (No-

operation) instructions, as follows:

I1: Mul R2,R3,R4

NOP

NOP

I2: Add R5,R4,R6

62

Fig: Operand forwarding

If the responsibility for detecting such dependencies is left entirely to the software, the

compiler must insert the NOP instructions to obtain a correct result. This possibility

illustrates the close link between the compiler and the hardware. A particular feature can be

either implemented in hardware or left to the compiler. Leaving tasks such as inserting NOP

instructions to the compiler leads to simpler hardware. Being aware of the need for a delay,

the compiler can attempt to reorder instructions to perform useful tasks in the NOP slots, and

thus achieve better performance. On the other hand, the insertion of NOP instructions leads to

larger code size. Also, it is often the case that a given processor architecture has several

hardware implementations, offering different features. NOP instructions inserted to satisfy

the requirements of one implementation may not be needed and, hence, would lead to

reduced performance on a different implementation.

 SIDE EFFECTS

The data dependencies encountered in the preceding examples are explicit and easily

detected because the register involved is named as the destination in instruction I1 and as a

source in I2. Sometimes an instruction changes the contents of a register other than the one

named as the destination. An instruction that uses an autoincrement or autodecrement

addressing mode is an example. In addition to storing new data in its destination location, the

instruction changes the contents of a source register used to access one of its operands. All

the precautions needed to handle data dependencies involving the destination location must

also be applied to the registers affected by an autoincrement or autodecrement operation.

When a location other than one explicitly named in an instruction as a destination operand is

affected, the instruction is said to have a side effect. For example, stack instructions, such as

push and pop, produce similar side effects because they implicitly use the autoincrement and

autodecrement addressing modes.

63

Another possible side effect involves the condition code flags, which are used by

instructions such as conditional branches and add-with-carry. Suppose that registers R1 and

R2 hold a double-precision integer number that we wish to add to another double precision

number in registers R3 and R4. This may be accomplished as follows:

Add R1,R3

Add With Carry R2,R4

An implicit dependency exists between these two instructions through the carry flag.

This flag is set by the first instruction and used in the second instruction, which performs the

operation

R4 ← [R2] + [R4] + carry

Instructions that have side effects give rise to multiple data dependencies, which

lead to a substantial increase in the complexity of the hardware or software needed to resolve

them. For this reason, instructions designed for execution on pipelined hardware should have

few side effects. Ideally, only the contents of the destination location, either a register or a

memory location, should be affected by any given instruction. Side effects, such as setting the

condition code flags or updating the contents of an address pointer, should be kept to a

minimum. However, Chapter 2 showed that the autoincrement and autodecrement addressing

modes are potentially useful. Condition code flags are also needed for recording such

information as the generation of a carry or the ccurrence of overflow in an arithmetic

operation. we show how such functions can be provided by other means that are consistent

with a pipelined organization and with the requirements of optimizing compilers.

INSTRUCTION HAZARDS

The purpose of the instruction fetch unit is to supply the execution units with a steady

stream of instructions. Whenever this stream is interrupted, the pipeline stalls, as Figure 3.4

illustrates for the case of a cache miss. A branch instruction may also cause the pipeline to

stall. We will now examine the effect of branch instructions and the techniques that can be

used for mitigating their impact. We start with unconditional branches.

UNCONDITIONAL BRANCHES

 A sequence of instructions being executed in a two-stage pipeline. Instructions I1 to

I3 are stored at successive memory addresses, and I2 is a branch instruction. Let the branch

target be instruction Ik . In clock cycle 3, the fetch operation for instruction I3 is in progress

at the same time that the branch instruction is being decoded and the target address computed.

In clock cycle 4, the processor must discard I3, which has been incorrectly fetched, and fetch

instruction Ik . In the meantime, the hardware unit responsible for the Execute (E) step must

be told to do nothing during that clock period. Thus, the pipeline is stalled for one clock

cycle.

The time lost as a result of a branch instruction is often referred to as the branch

penalty. The branch penalty is one clock cycle. For a longer pipeline, the branch penalty may

64

be higher. The effect of a branch instruction on a four-stage pipeline. We have assumed that

the branch address is computed in step E2. Instructions I3 and I4 must be discarded, and the

target instruction, Ik , is fetched in clock cycle 5. Thus, the branch penalty is two clock

cycles.

Reducing the branch penalty requires the branch address to be computed earlier in the

pipeline. Typically, the instruction fetch unit has dedicated hardware to identify a branch

instruction and compute the branch target address as quickly as possible after an instruction is

fetched. With this additional hardware, both of these tasks can be performed in step D2,

leading to the sequence of events shown in Figure 3.9b. In this case, the branch penalty is

only one clock cycle.

Instruction Queue and Prefetching

Either a cache miss or a branch instruction stalls the pipeline for one or more clock

cycles. To reduce the effect of these interruptions, many processors employ sophisticated

fetch units that can fetch instructions before they are needed and put them in a queue.

Typically, the instruction queue can store several instructions. A separate unit, which we call

the dispatch unit, takes instructions from the front of the queue and sends them to the

execution unit. This leads to the organization shown in Figure 3.10. The dispatch unit also

performs the decoding function.

To be effective, the fetch unit must have sufficient decoding and processing capability

to recognize and execute branch instructions. It attempts to keep the instruction queue filled

at all times to reduce the impact of occasional delays when fetching instructions. When the

pipeline stalls because of a data hazard, for example, the dispatch unit is not able to issue

instructions from the instruction queue. However, the fetch unit continues to fetch

instructions and add them to the queue. Conversely, if there is a delay in fetching instructions

because of a branch or a cache miss, the dispatch unit continues to issue instructions from the

instruction queue.

 We have assumed that initially the queue contains one instruction. Every fetch

operation adds one instruction to the queue and every dispatch operation reduces the queue

length by one. Hence, the queue length remains the same for the first four clock cycles.

(There is both an F and a D step in each of these cycles.) Suppose that instruction I1

introduces a 2-cycle stall. Since space is available in the queue, the fetch unit continues to

fetch instructions and the queue length rises to 3 in clock cycle 6.

Instruction I5 is a branch instruction. Its target instruction, Ik , is fetched in cycle 7,

and instruction I6 is discarded. The branch instruction would normally cause a stall in cycle 7

as a result of discarding instruction I6. Instead, instruction I4 is dispatched from the queue to

the decoding stage. After discarding I6, the queue length drops to 1 in cycle 8. The queue

length will be at this value until another stall is encountered.

Instructions I1, I2, I3, I4, and Ik complete execution in successive clock cycles.

Hence, the branch instruction does not increase the overall execution time. This is because

the instruction fetch unit has executed the branch instruction (by computing the branch

65

address) concurrently with the execution of other instructions. This technique is referred to as

branch folding.

Note that branch folding occurs only if at the time a branch instruction is encountered,

at least one instruction is available in the queue other than the branch instruction. If only the

branch instruction is in the queue, execution would proceed. Therefore, it is desirable to

arrange for the queue to be full most of the time, to ensure an adequate supply of instructions

for processing. This can be achieved by increasing the rate at which the fetch unit reads

instructions from the cache. In many processors, the width of the connection between the

fetch unit and the instruction cache allows reading more than one instruction in each clock

cycle. If the fetch unit replenishes the instruction queue quickly after a branch has occurred,

the probability that branch folding will occur increases.

Having an instruction queue is also beneficial in dealing with cache misses. When a

cache miss occurs, the dispatch unit continues to send instructions for execution as long as

the instruction queue is not empty. Meanwhile, the desired cache block is read from the main

memory or from a secondary cache. When fetch operations are resumed, the instruction

queue is refilled. If the queue does not become empty, a cache miss will have no effect on the

rate of instruction execution.

In summary, the instruction queue mitigates the impact of branch instructions on

performance through the process of branch folding. It has a similar effect on stalls caused by

cache misses. The effectiveness of this technique is enhanced when the instruction fetch unit

is able to read more than one instruction at a time from the instruction cache.

CONDITIONAL BRANCHES AND BRANCH PREDICTION

A conditional branch instruction introduces the added hazard caused by the

dependency of the branch condition on the result of a preceding instruction. The decision to

branch cannot be made until the execution of that instruction has been completed.

Branch instructions occur frequently. In fact, they represent about 20 percent of the

dynamic instruction count of most programs. (The dynamic count is the number of instruction

executions, taking into account the fact that some program instructions are executed many

times because of loops.) Because of the branch penalty, this large percentage would reduce

the gain in performance expected from pipelining. Fortunately, branch instructions can be

handled in several ways to reduce their negative impact on the rate of execution of

instructions.

Delayed Branch

The processor fetches instruction I3 before it determines whether the current

instruction, I2, is a branch instruction. When execution of I2 is completed and a branch is to

be made, the processor must discard I3 and fetch the instruction at the branch target. The

location following a branch instruction is called a branch delay slot. There may be more than

one branch delay slot, depending on the time it takes to execute a branch instruction. The

66

instructions in the delay slots are always fetched and at least partially executed before the

branch decision is made and the branch target address is computed.

A technique called delayed branching can minimize the penalty incurred as a result of

conditional branch instructions. The idea is simple. The instructions in the delay slots are

always fetched. Therefore, we would like to arrange for them to be fully executed whether or

not the branch is taken. The objective is to be able to place useful instructions in these slots.

If no useful instructions can be placed in the delay slots, these slots must be filled with NOP

instructions. This situation is exactly the same as in the case of data dependency.

Register R2 is used as a counter to determine the number of times the contents of

register R1 are shifted left. For a processor with one delay slot, the instructions can be

reordered. The shift instruction is fetched while the branch instruction is being executed.

After evaluating the branch condition, the processor fetches the instruction at LOOP or at

NEXT, depending on whether the branch condition is true or false, respectively. In either

case, it completes execution of the shift instruction. The sequence of events during the last

two passes in the loop. Pipelined operation is not interrupted at any time, and there are no idle

cycles. Logically, the program is executed as if the branch instruction were placed after the

shift instruction. That is, branching takes place one instruction later than where the branch

instruction appears in the instruction sequence in the memory, hence the name “delayed

branch.”

The effectiveness of the delayed branch approach depends on how often it is possible

to reorder instructions. Experimental data collected from many programs indicate that

sophisticated compilation techniques can use one branch delay slot in as many as 85 percent

of the cases. For a processor with two branch delay slots, the compiler attempts to find two

instructions preceding the branch instruction that it can move into the delay slots without

introducing a logical error. The chances of finding two such instructions are considerably less

than the chances of finding one. Thus, if increasing the number of pipeline stages involves an

increase in the number of branch delay slots, the potential gain in performance may not be

fully realized.

Branch Prediction

Another technique for reducing the branch penalty associated with conditional

branches is to attempt to predict whether or not a particular branch will be taken. The

simplest form of branch prediction is to assume that the branch will not take place and to

continue to fetch instructions in sequential address order. Until the branch condition is

evaluated, instruction execution along the predicted path must be done on a speculative basis.

Speculative execution means that instructions are executed before the processor is certain that

they are in the correct execution sequence. Hence, care must be taken that no processor

registers or memory locations are updated until it is confirmed that these instructions should

indeed be executed. If the branch decision indicates otherwise, the

Instructions and all their associated data in the execution units must be purged, and the

correct instructions fetched and executed.

67

 The Compare instruction is followed by a Branch>0 instruction. Branch prediction

takes place in cycle 3, while instruction I3 is being fetched. The fetch unit predicts that the

branch will not be taken, and it continues to fetch instruction I4 as I3enters the Decode stage.

The results of the compare operation are available at the end of cycle 3. Assuming that they

are forwarded immediately to the instruction fetch unit, the branch condition is evaluated in

cycle 4. At this point, the instruction fetch unit realizes that the prediction was incorrect, and

the two instructions in the execution pipe are purged. A new instruction, Ik , is fetched from

the branch target address in clock cycle 5.

If branch outcomes were random, then half the branches would be taken. Then the

simple approach of assuming that branches will not be taken would save the time lost to

conditional branches 50 percent of the time. However, better performance can be achieved if

we arrange for some branch instructions to be predicted as taken and others as not taken,

depending on the expected program behavior. For example, a branch instruction at the end of

a loop causes a branch to the start of the loop for every pass through the loop except the last

one. Hence, it is advantageous to assume that this branch will be taken and to have the

instruction fetch unit start to fetch instructions at the branch target address. On the other

hand, for a branch instruction at the beginning of a program loop, it is advantageous to

assume that the branch will not be taken.

A decision on which way to predict the result of the branch may be made in hardware

by observing whether the target address of the branch is lower than or higher than the address

of the branch instruction. A more flexible approach is to have the compiler decide whether a

given branch instruction should be predicted taken or not taken. The branch instructions of

some processors, such as SPARC, include a branch prediction bit, which is set to 0 or 1 by

the compiler to indicate the desired behavior. The instruction fetch unit checks this bit to

predict whether the branch will be taken or not taken.

With either of these schemes, the branch prediction decision is always the same every

time a given instruction is executed. Any approach that has this characteristic is called static

branch prediction. Another approach in which the prediction decision may change depending

on execution history is called dynamic branch prediction.

Dynamic Branch Prediction

The objective of branch prediction algorithms is to reduce the probability of making a

wrong decision, to avoid fetching instructions that eventually have to be discarded. In

dynamic branch prediction schemes, the processor hardware assesses the likelihood of a

given branch being taken by keeping track of branch decisions every time that instruction is

executed.

In its simplest form, the execution history used in predicting the outcome of a given

branch instruction is the result of the most recent execution of that instruction. The processor

assumes that the next time the instruction is executed, the result is likely to be the same.

Hence, the algorithm may be described by the two-state machine. The two states are:

LT: Branch is likely to be taken

LNT: Branch is likely not to be taken

68

Suppose that the algorithm is started in state LNT. When the branch instruction is

executed and if the branch is taken, the machine moves to state LT. Otherwise, it remains in

state LNT. The next time the same instruction is encountered, the branch is predicted as taken

if the corresponding state machine is in state LT. Otherwise it is predicted as not taken.

This simple scheme, which requires one bit of history information for each branch

instruction, works well inside program loops. Once a loop is entered, the branch instruction

that controls looping will always yield the same result until the last pass through the loop is

reached. In the last pass, the branch prediction will turn out to be incorrect, and the branch

history state machine will be changed to the opposite state. Unfortunately, this means that the

next time this same loop is entered, and assuming that there will be more than one pass

through the loop, the machine will lead to the wrong prediction.

Better performance can be achieved by keeping more information about execution

history. An algorithm that uses 4 states, thus requiring two bits of history information for

each branch instruction. The four states are:

ST: Strongly likely to be taken

LT: Likely to be taken

LNT: Likely not to be taken

SNT: Strongly likely not to be taken

Again assume that the state of the algorithm is initially set to LNT. After the branch

instruction has been executed, and if the branch is actually taken, the state is changed to ST;

otherwise, it is changed to SNT. As program execution progresses and the same instruction is

encountered again, the state of the branch prediction algorithm continues to change as shown.

When a branch instruction is encountered, the instruction fetch unit predicts that the branch

will be taken if the state is either LT or ST, and it begins to fetch instructions at the branch

target address. Otherwise, it continues to fetch instructions in sequential address order.

It is instructive to examine the behavior of the branch prediction algorithm in some

detail. When in state SNT, the instruction fetch unit predicts that the branch will not be taken.

If the branch is actually taken, that is if the prediction is incorrect, the state changes to LNT.

This means that the next time the same branch instruction is encountered, the instruction

fetch unit will still predict that the branch will not be taken. Only if the prediction is incorrect

twice in a row will the state change to ST.

After that, the branch will be predicted as taken.

Let us reconsider what happens when executing a program loop. Assume that the

branch instruction is at the end of the loop and that the processor sets the initial state of the

algorithm to LNT. During the first pass, the prediction will be wrong (not taken), and hence

the state will be changed to ST. In all subsequent passes the prediction will be correct, except

69

for the last pass. At that time, the state will change to LT. When the loop is entered a second

time, the prediction will be correct (branch taken).

We now add one final modification to correct the mispredicted branch at the time the

loop is first entered. The cause of the misprediction in this case is the initial state of the

branch prediction algorithm. In the absence of additional information about the nature of the

branch instruction, we assumed that the processor sets the initial state to LNT. The

information needed to set the initial state correctly can be provided by any of the static

prediction schemes discussed earlier. Either by comparing addresses or by checking a

prediction bit in the instruction, the processor sets the initial state of the algorithm to LNT or

LT. In the case of a branch at the end of a loop, the compiler would indicate that the branch

should be predicted as taken, causing the initial state to be set to LT. With this modification,

branch prediction will be correct all the time, except for the final pass through the loop.

Misprediction in this latter case is unavoidable.

The state information used in dynamic branch prediction algorithms may be kept by

the processor in a variety of ways. It may be recorded in a look-up table, which is accessed

using the low-order part of the branch instruction address. In this case, it is possible for two

branch instructions to share the same table entry. This may lead to a branch being

mispredicted, but it does not cause an error in execution. Misprediction only introduces a

small delay in execution time. An alternative approach is to store the history bits as a tag

associated with branch instructions in the instruction cache. We will see in Section 3.7 how

this information is handled in the SPARC processor.

 INFLUENCE ON INSTRUCTION SETS

We have seen that some instructions are much better suited to pipeline execution than

others. For example, instruction side effects can lead to undesirable data dependencies. In this

section, we examine the relationship between pipelined execution and machine instruction

features. We discuss two key aspects of machine instructions—addressing modes and

condition code flags.

ADDRESSING MODES

Addressing modes should provide the means for accessing a variety of data structures

simply and efficiently. Useful addressing modes include index, indirect, autoincrement, and

autodecrement. Many processors provide various combinations of these modes to increase the

flexibility of their instruction sets. Complex addressing modes, such as those involving

double indexing, are often encountered.

In choosing the addressing modes to be implemented in a pipelined processor, we

must consider the effect of each addressing mode on instruction flow in the pipeline. Two

important considerations in this regard are the side effects of modes such as auto increment

and autodecrement and the extent to which complex addressing modes cause the pipeline to

stall. Another important factor is whether a given mode is likely to be used by compilers.

70

To compare various approaches, we assume a simple model for accessing operands in

the memory. The load instruction Load X(R1),R2 takes five cycles to complete execution, as

indicated in Figure 3.5. However, the instruction

Load (R1),R2

can be organized to fit a four-stage pipeline because no address computation is required.

Access to memory can take place in stage E. A more complex addressing mode may require

several accesses to the memory to reach the named operand. For example, the instruction

Load (X(R1)),R2

may be executed , assuming that the index offset, X, is given in the instruction word. After

computing the address in cycle 3, the processor needs to access memory twice — first to read

location X+[R1] in clock cycle 4 and then to read location [X+[R1]] in cycle 5. If R2 is a

source operand in the next instruction, that instruction would be stalled for three cycles,

which can be reduced to two cycles with operand forwarding.

To implement the same Load operation using only simple addressing modes requires several

instructions. For example, on a computer that allows three operand addresses, we can use

Add #X,R1,R2

Load (R2),R2

Load (R2),R2

The Add instruction performs the operation R2←X+[R1]. The two Load instructions fetch

the address and then the operand from the memory. This sequence of instructions takes

exactly the same number of clock cycles as the original, single Load instruction.

This example indicates that, in a pipelined processor, complex addressing modes that

involve several accesses to the memory do not necessarily lead to faster execution. The main

advantage of such modes is that they reduce the number of instructions needed to perform a

given task and thereby reduce the program space needed in the main memory. Their main

disadvantage is that their long execution times cause the pipeline to stall, thus reducing its

effectiveness. They require more complex hardware to decode and execute them. Also, they

are not convenient for compilers to work with.

The instruction sets of modern processors are designed to take maximum advantage of

pipelined hardware. Because complex addressing modes are not suitable for pipelined

execution, they should be avoided. The addressing modes used in modern processors often

have the following features:

• Access to an operand does not require more than one access to the memory.

• Only load and store instructions access memory operands.

• The addressing modes used do not have side effects.

71

Three basic addressing modes that have these features are register, register indirect, and

index. The first two require no address computation. In the index mode, the address can be

computed in one cycle, whether the index value is given in the instruction or in a register.

Memory is accessed in the following cycle. None of these modes has any side effects, with

one possible exception. Some architectures, such as ARM, allow the address computed in the

index mode to be written back into the index register. This is a side effect that would not be

allowed under the guidelines above. Note also that relative addressing can be used; this is a

special case of indexed addressing in which the program counter is used as the index register.

The three features just listed were first emphasized as part of the concept of RISC

processors.

CONDITION CODES

In many processors, the condition code flags are stored in the processor status

register. They are either set or cleared by many instructions, so that they can be tested by

subsequent conditional branch instructions to change the flow of program execution. An

optimizing compiler for a pipelined processor attempts to reorder instructions to avoid

stalling the pipeline when branches or data dependencies between successive instructions

occur. In doing so, the compiler must ensure that reordering does not cause a change in the

outcome of a computation. The dependency introduced by the condition-code flags reduces

the flexibility available for the compiler to reorder instructions.

Consider the sequence of instructions and assume that the execution of the Compare

and Branch=0 instructions proceeds . The branch decision takes place in step E2 rather than

D2 because it must await the result of the Compare instruction. The execution time of the

Branch instruction can be reduced by interchanging the Add and Compare instructions. This

will delay the branch instruction by one cycle relative to the Compare instruction. As a result, at the

time the Branch instruction is being decoded the result of the Compare instruction will be

available and a correct branch decision will be made. There would be no need for branch

prediction. However, interchanging the Add and Compare instructions can be done only if the

Add instruction does not affect the condition codes.

These observations lead to two important conclusions about the way condition codes

should be handled. First, to provide flexibility in reordering instructions, the condition-code

flags should be affected by as few instructions as possible. Second, the compiler should be

able to specify in which instructions of a program the condition codes are affected and in

which they are not. An instruction set designed with pipelining in mind usually provides the

desired flexibility. Figure 3.17b shows the instructions reordered assuming that the condition

code flags are affected only when this is explicitly stated as part of the instruction OP code.

The SPARC and ARM architectures provide this flexibility.

72

DATAPATH AND CONTROL CONSIDERATIONS

Consider the three-bus structure. To make it suitable for pipelined execution, it can be

modified to support a 4-stage pipeline. The resources involved in stages F and E and those

used in stages D and W in black. Operations in the data cache may happen during stage E or

at a later stage, depending on the addressing mode and the implementation details.

1. There are separate instruction and data caches that use separate address and data

connections to the processor. This requires two versions of the MAR register, IMAR for

accessing the instruction cache and DMAR for accessing the data cache.

2. The PC is connected directly to the IMAR, so that the contents of the PC can be

transferred to IMAR at the same time that an independent ALU operation is taking place.

3. The data address in DMAR can be obtained directly from the register file or from

the ALU to support the register indirect and indexed addressing modes.

4. Separate MDR registers are provided for read and write operations. Data can be

transferred directly between these registers and the register file during load and store

operations without the need to pass through the ALU.

5. Buffer registers have been introduced at the inputs and output of the ALU. These

are registers SRC1, SRC2, and RSLT in Figure 3.7. Forwarding connections are not included

in Figure 3.18. They may be added if desired.

6. The instruction register has been replaced with an instruction queue, which is

loaded from the instruction cache.

7. The output of the instruction decoder is connected to the control signal pipeline.

The need for buffering control signals and passing them from one stage to the next along with

the instruction is discussed in Section 3.1. This pipeline holds the control signals in buffers

B2 and B3.

The following operations can be performed independently in the processor:

• Reading an instruction from the instruction cache

• Incrementing the PC

• Decoding an instruction

• Reading from or writing into the data cache

• Reading the contents of up to two registers from the register file

• Writing into one register in the register file

• Performing an ALU operation

73

Because these operations do not use any shared resources, they can be performed

simultaneously in any combination. The structure provides the flexibility required to

implement the four-stage pipeline. For example, let I1, I2, I3, and I4 be a sequence of four

instructions. The following actions all happen during clock cycle 4:

• Write the result of instruction I1 into the register file

• Read the operands of instruction I2 from the register file

• Decode instruction I3

• Fetch instruction I4 and increment the PC.

PERFORMANCE CONSIDERATIONS

We pointed that the execution time, T , of a program that has a dynamic instruction count N

is given by

 T = N* S

 R

where S is the average number of clock cycles it takes to fetch and execute one

instruction,and R is the clock rate. This simple model assumes that instructions are executed

one after the other, with no overlap. A useful performance indicator is the instruction

throughput, which is the number of instructions executed per second. For sequential

execution, the throughput, Ps is given by

Ps = R/S

we examine the extent to which pipelining increases instruction throughput. The only

real measure of performance is the total execution time of a program. Higher instruction

throughput will not necessarily lead to higher performance if a larger number of instructions

is needed to implement the desired task. For this reason, the SPEC ratings provide a much

better indicator when comparing two processors. A four-stage pipeline may increase

instruction throughput by a factor of four. In general, an n-stage pipeline has the potential to

increase throughput n times. Thus, it would appear that the higher the value of n, the larger

the performance gain. This leads to two questions:

• How much of this potential increase in instruction throughput can be realized in

practice?

• What is a good value for n?

Any time a pipeline is stalled, the instruction throughput is reduced. Hence, the

performance of a pipeline is highly influenced by factors such as branch and cache miss

penalties. First, we discuss the effect of these factors on performance, and then we return to

the question of how many pipeline stages should be used.

74

EFFECT OF INSTRUCTION HAZARDS

The effects of various hazards have been examined qualitatively in the previous

sections. We now assess the impact of cache misses and branch penalties in quantitative

terms. Consider a processor that uses the four-stage pipeline of Figure 3.2. The clock rate,

hence the time allocated to each step in the pipeline, is determined by the longest step. Let the

delay through the ALU be the critical parameter. This is the time needed to add two integers.

Thus, if the ALU delay is 2 ns, a clock of 500 MHz can be used. The on-chip instruction and

data caches for this processor should also be designed to have an access time of 2 ns. Under

ideal conditions, this pipelined processor will have an instruction throughput, Pp, given by

Pp = R = 500 MIPS (million instructions per second)

NUMBER OF PIPELINE STAGES

The fact that an n-stage pipeline may increase instruction throughput by a factor of n

suggests that we should use a large number of stages. However, as the number of pipeline

stages increases, so does the probability of the pipeline being stalled, because more

instructions are being executed concurrently. Thus, dependencies between instructions that

are far apart may still cause the pipeline to stall. Also, branch penalties may become more

significant. For these reasons, the gain from increasing the value of n begins to diminish, and

the associated cost is not justified.

Another important factor is the inherent delay in the basic operations performed by

the processor. The most important among these is the ALU delay. In many processors, the

cycle time of the processor clock is chosen such that one ALU operation can be completed in

one cycle. Other operations are divided into steps that take about the same time as an add

operation. It is also possible to use a pipelined ALU. For example, the ALU of the Compaq

Alpha 21064 processor consists of a two-stage pipeline, in which each stage completes its

operation in 5 ns.

Many pipelined processors use four to six stages. Others divide instruction execution

into smaller steps and use more pipeline stages and a faster clock. For example, the Ultra

SPARC II uses a 9-stage pipeline and Intel’s Pentium Pro uses a 12-stage pipeline. The latest

Intel processor, Pentium 4, has a 20-stage pipeline and uses a clock speed in the range 1.3 to

1.5 GHz. For fast operations, there are two pipeline stages in one clock cycle.

75

UNIT IV MEMORY SYSTEM

1. BASIC CONCEPTS:

 The maximum size of the memory that can be used in any computer is determined by

the addressing scheme.

Address Memory Locations

16 Bit 2
16

 = 64 K

32 Bit 2
32

 = 4G (Giga)

40 Bit 2
40

 = IT (Tera)

Fig: Connection of Memory to Processor:

 If MAR is k bits long and MDR is n bits long, then the memory may contain upto 2
K

addressable locations and the n-bits of data are transferred between the memory and

processor.

 This transfer takes place over the processor bus.

 The processor bus has,

 Address Line

 Data Line

 Control Line (R/W, MFC – Memory Function Completed)

 The control line is used for co-ordinating data transfer.

 The processor reads the data from the memory by loading the address of the required

memory location into MAR and setting the R/W line to 1.

 The memory responds by placing the data from the addressed location onto the data

lines and confirms this action by asserting MFC signal.

 Upon receipt of MFC signal, the processor loads the data onto the data lines into

MDR register.

 The processor writes the data into the memory location by loading the address of this

location into MAR and loading the data into MDR sets the R/W line to 0.

Memory Access Time → It is the time that elapses between the initiation of an

 Operation and the completion of that operation.

Memory Cycle Time → It is the minimum time delay that required between the

 initiation of the two successive memory operations.

76

RAM (Random Access Memory):

 In RAM, if any location that can be accessed for a Read/Write operation in fixed

amount of time, it is independent of the location’s address.

Cache Memory:

 It is a small, fast memory that is inserted between the larger slower main memory and

the processor.

 It holds the currently active segments of a program and their data.

Virtual memory:

 The address generated by the processor does not directly specify the physical

locations in the memory.

 The address generated by the processor is referred to as a virtual / logical address.

 The virtual address space is mapped onto the physical memory where data are

actually stored.

 The mapping function is implemented by a special memory control circuit is often

called the memory management unit.

 Only the active portion of the address space is mapped into locations in the physical

memory.

 The remaining virtual addresses are mapped onto the bulk storage devices used,

which are usually magnetic disk.

 As the active portion of the virtual address space changes during program execution,

the memory management unit changes the mapping function and transfers the data

between disk and memory.

 Thus, during every memory cycle, an address processing mechanism determines

whether the addressed in function is in the physical memory unit.

 If it is, then the proper word is accessed and execution proceeds.

 If it is not, a page of words containing the desired word is transferred from disk to

memory.

 This page displaces some page in the memory that is currently inactive.

2. SEMI CONDUCTOR RAM MEMORIES:

 Semi-Conductor memories are available is a wide range of speeds.

 Their cycle time ranges from 100ns to 10ns

INTERNAL ORGANIZATION OF MEMORY CHIPS:

 Memory cells are usually organized in the form of array, in which each cell is capable

of storing one bit of information.

 Each row of cells constitute a memory word and all cells of a row are connected to a

common line called as word line.

 The cells in each column are connected to Sense / Write circuit by two bit lines.

 The Sense / Write circuits are connected to data input or output lines of the chip.

 During a write operation, the sense / write circuit receive input information and store

it in the cells of the selected word.

77

Fig: Organization of bit cells in a memory chip

 The data input and data output of each senses / write circuit are connected to a single

bidirectional data line that can be connected to a data bus of the cpu.

 R / W Specifies the required operation.

 CS Chip Select input selects a given chip in the multi-chip memory system

Bit Organization

Requirement of external

connection for address, data and

control lines

128 (16x8) 14

(1024) 128x8(1k) 19

Static Memories:

Memories that consists of circuits capable of retaining their state as long as power is applied

are known as static memory.

Fig:Static RAM cell

78

 Two inverters are cross connected to form a batch

 The batch is connected to two bit lines by transistors T1 and T2.

 These transistors act as switches that can be opened / closed under the control of the

word line.

 When the wordline is at ground level, the transistors are turned off and the latch retain

its state.

Read Operation:

 In order to read the state of the SRAM cell, the word line is activated to close

switches T1 and T2.

 If the cell is in state 1, the signal on bit line b is high and the signal on the bit line b is

low.Thus b and b are complement of each other.

 Sense / write circuit at the end of the bit line monitors the state of b and b’ and set the

output accordingly.

Write Operation:

 The state of the cell is set by placing the appropriate value on bit line b and its

complement on b and then activating the word line. This forces the cell into the

corresponding state.

 The required signal on the bit lines are generated by Sense / Write circuit.

Fig:CMOS cell (Complementary Metal oxide Semi Conductor):

 Transistor pairs (T3, T5) and (T4, T6) form the inverters in the latch.

 In state 1, the voltage at point X is high by having T5, T6 on and T4, T5 are OFF.

 Thus T1, and T2 returned ON (Closed), bit line b and b will have high and low signals

respectively.

 The CMOS requires 5V (in older version) or 3.3.V (in new version) of power supply

voltage.

 The continuous power is needed for the cell to retain its state

Merit :

 It has low power consumption because the current flows in the cell only when the cell

is being activated accessed.

 Static RAM’s can be accessed quickly. It access time is few nanoseconds.

Demerit:

 SRAM’s are said to be volatile memories because their contents are lost when the

power is interrupted.

79

Asynchronous DRAMS:-

 Less expensive RAM’s can be implemented if simplex calls are used such cells

cannot retain their state indefinitely. Hence they are called Dynamic RAM’s

(DRAM).

 The information stored in a dynamic memory cell in the form of a charge on a

capacitor and this charge can be maintained only for tens of Milliseconds.

 The contents must be periodically refreshed by restoring by restoring this capacitor

charge to its full value.

Fig:A single transistor dynamic Memory cell

 In order to store information in the cell, the transistor T is turned ‘on’ & the

appropriate voltage is applied to the bit line, which charges the capacitor.

 After the transistor is turned off, the capacitor begins to discharge which is caused by

the capacitor’s own leakage resistance.

 Hence the information stored in the cell can be retrieved correctly before the threshold

value of the capacitor drops down.

 During a read operation, the transistor is turned ‘on’ & a sense amplifier connected to

the bit line detects whether the charge on the capacitor is above the threshold value.

 If charge on capacitor > threshold value -> Bit line will have logic value ‘1’.

 If charge on capacitor < threshold value -> Bit line will set to logic value ‘0’.

Fig:Internal organization of a 2M X 8 dynamic Memory chip.

80

DESCRIPTION:

 The 4 bit cells in each row are divided into 512 groups of 8.

 21 bit address is needed to access a byte in the memory(12 bitTo select a row,9

bitSpecify the group of 8 bits in the selected row).

 A8-0 Row address of a byte.

 A20-9 Column address of a byte.

 During Read/ Write operation ,the row address is applied first. It is loaded into the

row address latch in response to a signal pulse on Row Address Strobe(RAS) input

of the chip.

 When a Read operation is initiated, all cells on the selected row are read and

refreshed.

 Shortly after the row address is loaded,the column address is applied to the address

pins & loaded into Column Address Strobe(CAS).

 The information in this latch is decoded and the appropriate group of 8 Sense/Write

circuits are selected.

 R/W =1(read operation)The output values of the selected circuits are transferred to

the data lines D0 - D7.

 R/W =0(write operation)The information on D0 - D7 are transferred to the selected

circuits.

 RAS and CAS are active low so that they cause the latching of address when they

change from high to low. This is because they are indicated by RAS & CAS.

 To ensure that the contents of a DRAM ‘s are maintained, each row of cells must be

accessed periodically.

 Refresh operation usually perform this function automatically.

 A specialized memory controller circuit provides the necessary control signals RAS &

CAS, that govern the timing.

 The processor must take into account the delay in the response of the memory. Such

memories are referred to as Asynchronous DRAM’s.

Fast Page Mode:

 Transferring the bytes in sequential order is achieved by applying the consecutive

sequence of column address under the control of successive CAS signals.

 This scheme allows transferring a block of data at a faster rate. The block of transfer

capability is called as Fast Page Mode.

Synchronous DRAM:

 Here the operations e directly synchronized with clock signal.

 The address and data connections are buffered by means of registers.

 The output of each sense amplifier is connected to a latch.

 A Read operation causes the contents of all cells in the selected row to be loaded in

these latches.

 Data held in the latches that correspond to the selected columns are transferred into

the data output register, thus becoming available on the data output pins.

 First ,the row address is latched under control of RAS signal.

 The memory typically takes 2 or 3 clock cycles to activate the selected row.

 Then the column address is latched under the control of CAS signal.

81

 After a delay of one clock cycle,the first set of data bits is placed on the data lines.

 The SDRAM automatically increments the column address to access the next 3 sets of

bits in the selected row, which are placed on the data lines in the next 3 clock cycles.

Fig:Synchronous DRAM

Fig:Timing Diagram Burst Read of Length 4 in an SDRAM

Latency & Bandwidth:

 A good indication of performance is given by two parameters.They are,

 Latency

 Bandwidth

Latency:

 It refers to the amount of time it takes to transfer a word of data to or from the

memory.

 For a transfer of single word,the latency provides the complete indication of memory

performance.

82

 For a block transfer,the latency denote the time it takes to transfer the first word of

data.

Bandwidth:

 It is defined as the number of bits or bytes that can be transferred in one second.

 Bandwidth mainly depends upon the speed of access to the stored data & on the

number of bits that can be accessed in parallel.

Double Data Rate SDRAM(DDR-SDRAM):

 The standard SDRAM performs all actions on the rising edge of the clock signal.

 The double data rate SDRAM transfer data on both the edges(loading edge, trailing

edge).

 The Bandwidth of DDR-SDRAM is doubled for long burst transfer.

 To make it possible to access the data at high rate , the cell array is organized into two

banks.

 Each bank can be accessed separately.

 Consecutive words of a given block are stored in different banks.

 Such interleaving of words allows simultaneous access to two words that are

transferred on successive edge of the clock.

Larger Memories:

Dynamic Memory System:

 The physical implementation is done in the form of Memory Modules.

 If a large memory is built by placing DRAM chips directly on the main system

printed circuit board that contains the processor ,often referred to as Motherboard;it

will occupy large amount of space on the board.

 These packaging consideration have led to the development of larger memory units

known as SIMM’s & DIMM’s .

 SIMM-Single Inline memory Module

 DIMM-Dual Inline memory Module

 SIMM & DIMM consists of several memory chips on a separate small board that

plugs vertically into single socket on the motherboard.

MEMORY SYSTEM CONSIDERATION:

 To reduce the number of pins, the dynamic memory chips use multiplexed address

inputs.

 The address is divided into two parts.They are,

 High Order Address Bit(Select a row in cell array & it is provided first and

latched into memory chips under the control of RAS signal).

 Low Order Address Bit(Selects a column and they are provided on same

address pins and latched using CAS signals).

83

 The Multiplexing of address bit is usually done by Memory Controller Circuit.

Fig:Use of Memory Controller

 The Controller accepts a complete address & R/W signal from the processor, under

the control of a Request signal which indicates that a memory access operation is

needed.

 The Controller then forwards the row & column portions of the address to the

memory and generates RAS &CAS signals.

 It also sends R/W &CS signals to the memory.

 The CS signal is usually active low, hence it is shown as CS.

Refresh Overhead:

 All dynamic memories have to be refreshed.

 In DRAM ,the period for refreshing all rows is 16ms whereas 64ms in SDRAM.

Eg:Given a cell array of 8K(8192).

Clock cycle=4

Clock Rate=133MHZ

No of cycles to refresh all rows =8192*4

 =32,768

Time needed to refresh all rows=32768/133*10
6

 =246*10
-6

 sec

 =0.246sec

84

Refresh Overhead =0.246/64

Refresh Overhead =0.0038

Rambus Memory:

 The usage of wide bus is expensive.

 Rambus developed the implementation of narrow bus.

 Rambus technology is a fast signaling method used to transfer information between

chips.

 Instead of using signals that have voltage levels of either 0 or Vsupply to represent the

logical values, the signals consists of much smaller voltage swings around a reference

voltage Vref.

 .The reference Voltage is about 2V and the two logical values are represented by 0.3V

swings above and below Vref..

 This type of signaling is generally is known as Differential Signalling.

 Rambus provides a complete specification for the design of communication

links(Special Interface circuits) called as Rambus Channel.

 Rambus memory has a clock frequency of 400MHZ.

 The data are transmitted on both the edges of the clock so that the effective data

transfer rate is 800MHZ.

 The circuitry needed to interface to the Rambus channel is included on the chip.Such

chips are known as Rambus DRAM’s(RDRAM).

 Rambus channel has,

 9 Data lines(1-8Transfer the data,9
th

 lineParity checking).

 Control line

 Power line

 A two channel rambus has 18 data lines which has no separate address lines. It is also

called as Direct RDRAM’s.

 Communication between processor or some other device that can serves as a master

and RDRAM modules are serves as slaves ,is carried out by means of packets

transmitted on the data lines.

 There are 3 types of packets. They are,

 Request

 Acknowledge

 Data

3. READ ONLY MEMORY:

 Both SRAM and DRAM chips are volatile,which means that they lose the stored

information if power is turned off.

 Many application requires Non-volatile memory (which retain the stored information

if power is turned off).

 Eg:Operating System software has to be loaded from disk to memory which requires

the program that boots the Operating System ie. It requires non-volatile memory.

 Non-volatile memory is used in embedded system.

 Since the normal operation involves only reading of stored data ,a memory of this

type is called ROM.

85

Fig:ROM cell

At Logic value ‘0’ Transistor(T) is connected to the ground point(P).

 Transistor switch is closed & voltage on bitline nearly drops to zero.

At Logic value ‘1’ Transistor switch is open.

 The bitline remains at high voltage.

 To read the state of the cell,the word line is activated.

 A Sense circuit at the end of the bitline generates the proper output value.

Types of ROM:

 Different types of non-volatile memory are,

 PROM

 EPROM

 EEPROM

 Flash Memory

PROM:-Programmable ROM:

 PROM allows the data to be loaded by the user.

 Programmability is achieved by inserting a ‘fuse’ at point P in a ROM cell.

 Before it is programmed, the memory contains all 0’s

 The user can insert 1’s at the required location by burning out the fuse at these locations using

high-current pulse.

 This process is irreversible.

Merit:

 It provides flexibility.

 It is faster.

 It is less expensive because they can be programmed directly by the user.

86

EPROM:-Erasable reprogrammable ROM:

 EPROM allows the stored data to be erased and new data to be loaded.

 In an EPROM cell, a connection to ground is always made at ‘P’ and a special transistor is

used, which has the ability to function either as a normal transistor or as a disabled transistor

that is always turned ‘off’.

 This transistor can be programmed to behave as a permanently open switch, by injecting

charge into it that becomes trapped inside.

 Erasure requires dissipating the charges trapped in the transistor of memory cells. This can be

done by exposing the chip to ultra-violet light, so that EPROM chips are mounted in packages

that have transparent windows.

Merits:

 It provides flexibility during the development phase of digital system.

 It is capable of retaining the stored information for a long time.

Demerits:

 The chip must be physically removed from the circuit for reprogramming and its entire

contents are erased by UV light.

EEPROM:-Electrically Erasable ROM:

Merits:

 It can be both programmed and erased electrically.

 It allows the erasing of all cell contents selectively.

Demerits:

 It requires different voltage for erasing ,writing and reading the stored data.

Flash Memory:

 In EEPROM, it is possible to read & write the contents of a single cell.

 In Flash device, it is possible to read the contents of a single cell but it is only possible to

write the entire contents of a block.

 Prior to writing,the previous contents of the block are erased.

 Eg.In MP3 player,the flash memory stores the data that represents sound.

 Single flash chips cannot provide sufficient storage capacity for embedded system

application.

 There are 2 methods for implementing larger memory modules consisting of number of

chips.They are,

 Flash Cards

 Flash Drives.

Merits:

 Flash drives have greater density which leads to higher capacity & low cost per bit.

 It requires single power supply voltage & consumes less power in their operation.

87

Flash Cards:

 One way of constructing larger module is to mount flash chips on a small card.

 Such flash card have standard interface.

 The card is simply plugged into a conveniently accessible slot.

 Its memory size are of 8,32,64MB.

 Eg:A minute of music can be stored in 1MB of memory. Hence 64MB flash cards can store

an hour of music.

Flash Drives:

 Larger flash memory module can be developed by replacing the hard disk drive.

 The flash drives are designed to fully emulate the hard disk.

 The flash drives are solid state electronic devices that have no movable parts.

Merits:

 They have shorter seek and access time which results in faster response.

 They have low power consumption which makes them attractive for battery driven

application.

 They are insensitive to vibration.

Demerit:

 The capacity of flash drive (<1GB) is less than hard disk(>1GB).

 It leads to higher cost perbit.

 Flash memory will deteriorate after it has been written a number of times(typically atleast 1

million times.)

4. SPEED, SIZE& COST:

Characteristics SRAM DRAM Magnetis Disk

Speed Very Fast Slower Much slower than

DRAM

Size Large Small Small

Cost Expensive Less Expensive Low price

Magnetic Disk:

 A huge amount of cost effective storage can be provided by magnetic disk;The main memory

can be built with DRAM which leaves SRAM’s to be used in smaller units where speed is of

essence.

Memory Speed Size Cost

Registers Very high Lower Very Lower

Primary cache High Lower Low

88

Secondary cache Low Low Low

Main memory Lower than Seconadry

cache

High High

Secondary Memory Very low Very High Very High

Fig:Memory Hierarchy

Types of Cache Memory:

 The Cache memory is of 2 types.They are,

 Primary /Processor Cache(Level1 or L1 cache)

 Secondary Cache(Level2 or L2 cache)

Primary Cache It is always located on the processor chip.

Secondary CacheIt is placed between the primary cache and the rest of the memory.

 The main memory is implemented using the dynamic

components(SIMM,RIMM,DIMM).

 The access time for main memory is about 10 times longer than the access time for L1

cache.

5.CACHE MEMORIES:

 The effectiveness of cache mechanism is based on the property of ‘Locality of

reference’.

Locality of Reference:

 Many instructions in the localized areas of the program are executed repeatedly

during some time period and remainder of the program is accessed relatively

infrequently.

 It manifests itself in 2 ways.They are,

 Temporal(The recently executed instruction are likely to be executed again very

soon.)

89

 Spatial(The instructions in close proximity to recently executed instruction are

also likely to be executed soon.)

 If the active segment of the program is placed in cache memory, then the total

execution time can be reduced significantly.

 The term Block refers to the set of contiguous address locations of some size.

 The cache line is used to refer to the cache block.

Fig:Use of Cache Memory

 The Cache memory stores a reasonable number of blocks at a given time but this

number is small compared to the total number of blocks available in Main Memory.

 The correspondence between main memory block and the block in cache memory is

specified by a mapping function.

 The Cache control hardware decide that which block should be removed to create

space for the new block that contains the referenced word.

 The collection of rule for making this decision is called the replacement algorithm.

 The cache control circuit determines whether the requested word currently exists in

the cache.

 If it exists, then Read/Write operation will take place on appropriate cache location. In

this case Read/Write hit will occur.

 In a Read operation, the memory will not involve.

 The write operation is proceed in 2 ways.They are,

 Write-through protocol

 Write-back protocol

Write-through protocol:

 Here the cache location and the main memory locations are updated simultaneously.

Write-back protocol:

 This technique is to update only the cache location and to mark it as with associated

flag bit called dirty/modified bit.

 The word in the main memory will be updated later,when the block containing this

marked word is to be removed from the cache to make room for a new block.

 If the requested word currently not exists in the cache during read operation,then read

miss will occur.

 To overcome the read miss Load –through / Early restart protocol is used.

Read Miss:

The block of words that contains the requested word is copied from the main memory into

cache.

90

Load –through:

 After the entire block is loaded into cache, the particular word requested is forwarded

to the processor.

 If the requested word not exists in the cache during write operation, then Write Miss

will occur.

 If Write through protocol is used, the information is written directly into main

memory.

 If Write back protocol is used then block containing the addressed word is first

brought into the cache and then the desired word in the cache is over-written with the

new information.

Mapping Function:

Direct Mapping:

 It is the simplest technique in which block j of the main memory maps onto block ‘j’

modulo 128 of the cache.

 Thus whenever one of the main memory blocks 0,128,256 is loaded in the cache,it is

stored in block 0.

 Block 1,129,257 are stored in cache block 1 and so on.

 The contention may arise when,

 When the cache is full

 When more than one memory block is mapped onto a given cache block

position.

 The contention is resolved by allowing the new blocks to overwrite the currently

resident block.

 Placement of block in the cache is determined from memory address.

Fig: Direct Mapped Cache

91

 The memory address is divided into 3 fields.They are,

Low Order 4 bit field(word)Selects one of 16 words in a block.

7 bit cache block fieldWhen new block enters cache,7 bit determines the cache

 position in which this block must be stored.

5 bit Tag fieldThe high order 5 bits of the memory address of the block is

 stored in 5 tag bits associated with its location in the cache.

 As execution proceeds, the high order 5 bits of the address is compared with tag bits

associated with that cache location.

 If they match,then the desired word is in that block of the cache.

 If there is no match,then the block containing the required word must be first read

from the main memory and loaded into the cache.

Merit:

 It is easy to implement.

Demerit:

 It is not very flexible.

Associative Mapping:

In this method, the main memory block can be placed into any cache block position.

Fig:Associative Mapped Cache.

92

 12 tag bits will identify a memory block when it is resolved in the cache.

 The tag bits of an address received from the processor are compared to the tag bits of

each block of the cache to see if the desired block is persent.This is called associative

mapping.

 It gives complete freedom in choosing the cache location.

 A new block that has to be brought into the cache has to replace(eject)an existing

block if the cache is full.

 In this method,the memory has to determine whether a given block is in the cache.

 A search of this kind is called an associative Search.

Merit:

 It is more flexible than direct mapping technique.

Demerit:

 Its cost is high.

Set-Associative Mapping:

 It is the combination of direct and associative mapping.

 The blocks of the cache are grouped into sets and the mapping allows a block of the

main memory to reside in any block of the specified set.

 In this case,the cache has two blocks per set,so the memory blocks

0,64,128……..4032 maps into cache set ‘0’ and they can occupy either of the two

block position within the set.

6 bit set fieldDetermines which set of cache contains the desired block .

6 bit tag fieldThe tag field of the address is compared to the tags of the two blocks of

 the set to clock if the desired block is present.

93

Fig: Set-Associative Mapping:

No of blocks per set no of set field

2 6

3 5

8 4

128 no set field

 The cache which contains 1 block per set is called direct Mapping.

 A cache that has ‘k’ blocks per set is called as ‘k-way set associative cache’.

 Each block contains a control bit called a valid bit.

 The Valid bit indicates that whether the block contains valid data.

 The dirty bit indicates that whether the block has been modified during its cache

residency.

94

 Valid bit=0When power is initially applied to system

 Valid bit =1When the block is loaded from main memory at first time.

 If the main memory block is updated by a source & if the block in the source is

already exists in the cache,then the valid bit will be cleared to ‘0’.

 If Processor & DMA uses the same copies of data then it is called as the Cache

Coherence Problem.

Merit:

 The Contention problem of direct mapping is solved by having few choices for block

placement.

 The hardware cost is decreased by reducing the size of associative search.

Replacement Algorithm:

 In direct mapping, the position of each block is pre-determined and there is no need of

replacement strategy.

 In associative & set associative method,the block position is not pre-

determined;ie..when the cache is full and if new blocks are brought into the cache,

then the cache controller must decide which of the old blocks has to be replaced.

 Therefore,when a block is to be over-written,it is sensible to over-write the one that

has gone the longest time without being referenced.This block is called Least

recently Used(LRU) block & the technique is called LRU algorithm.

 The cache controller track the references to all blocks with the help of block counter.

Eg:Consider 4 blocks/set in set associative cache,

 2 bit counter can be used for each block.

 When a ‘hit’ occurs,then block counter=0;The counter with values originally lower

than the referenced one are incremented by 1 & all others remain unchanged.

 When a ‘miss’ occurs & if the set is full,the blocks with the counter value 3 is

removed,the new block is put in its place & its counter is set to ‘0’ and other block

counters are incremented by 1.

Merit:

 The performance of LRU algorithm is improved by randomness in deciding which

block is to be over-written.

6.PERFORMANCE CONSIDERATION:

 Two Key factors in the commercial success are the performance & cost ie the best

possible performance at low cost.

 A common measure of success is called the Pricel Performance ratio.

 Performance depends on how fast the machine instruction are brought to the processor

and how fast they are executed.

 To achieve parallelism(ie. Both the slow and fast units are accessed in the same

manner),interleaving is used.

95

Interleaving:

Fig:Consecutive words in a Module

7.VIRTUAL MEMORY:

 Techniques that automatically move program and data blocks into the physical main

memory when they are required for execution is called the Virtual Memory.

 The binary address that the processor issues either for instruction or data are called the

virtual / Logical address.

 The virtual address is translated into physical address by a combination of hardware

and software components.This kind of address translation is done by MMU(Memory

Management Unit).

 When the desired data are in the main memory ,these data are fetched /accessed

immediately.

 If the data are not in the main memory,the MMU causes the Operating system to bring

the data into memory from the disk.

 Transfer of data between disk and main memory is performed using DMA scheme.

Address Translation:

 In address translation,all programs and data are composed of fixed length units called

Pages.

96

 The Page consists of a block of words that occupy contiguous locations in the main

memory.

 The pages are commonly range from 2K to 16K bytes in length.

 The cache bridge speed up the gap between main memory and secondary storage and

it is implemented in software techniques.

 Each virtual address generated by the processor contains virtual Page number(Low

order bit) and offset(High order bit)

Virtual Page number+ OffsetSpecifies the location of a particular byte (or word) within a

page.

Fig:Virtual Memory Organisation

Page Table:

 It contains the information about the main memory address where the page is stored &

the current status of the page.

Page Frame:

 An area in the main memory that holds one page is called the page frame.

Page Table Base Register:

 It contains the starting address of the page table.

Virtual Page Number+Page Table Base registerGives the address of the corresponding

entry in the page table.ie)it gives the starting address of the page if that page currently resides

in memory.

Control Bits in Page Table:

 The Control bits specifies the status of the page while it is in main memory.

97

Function:

 The control bit indicates the validity of the page ie)it checks whether the page is

actually loaded in the main memory.

 It also indicates that whether the page has been modified during its residency in the

memory;this information is needed to determine whether the page should be written

back to the disk before it is removed from the main memory to make room for another

page.

Fig:Virtual Memory Address Translation

 The Page table information is used by MMU for every read & write access.

 The Page table is placed in the main memory but a copy of the small portion of the

page table is located within MMU.

 This small portion or small cache is called Translation LookAside Buffer(TLB).

 This portion consists of the page table enteries that corresponds to the most recently

accessed pages and also contains the virtual address of the entry.

 When the operating system changes the contents of page table ,the control bit in TLB

will invalidate the corresponding entry in the TLB.

 Given a virtual address,the MMU looks in TLB for the referenced page.

 If the page table entry for this page is found in TLB,the physical address is obtained

immediately.

 If there is a miss in TLB,then the required entry is obtained from the page table in the

main memory & TLB is updated.

 When a program generates an access request to a page that is not in the main memory

,then Page Fault will occur.

 The whole page must be broght from disk into memry before an access can proceed.

 When it detects a page fault,the MMU asks the operating system to generate an

interrupt.

98

Fig:Use of Associative Mapped TLB

 The operating System suspend the execution of the task that caused the page fault and

begin execution of another task whose pages are in main memory because the long

delay occurs while page transfer takes place.

 When the task resumes,either the interrupted instruction must continue from the point

of interruption or the instruction must be restarted.

 If a new page is brought from the disk when the main memory is full,it must replace

one of the resident pages.In that case,it uses LRU algorithm which removes the least

referenced Page.

 A modified page has to be written back to the disk before it is removed from the main

memory. In that case,write –through protocol is used.

8.MEMORY MANAGEMENT REQUIREMENTS:

 Management routines are part of the Operating system.

 Assembling the OS routine into virtual address space is called ‘System Space’.

 The virtual space in which the user application program reside is called the ‘User

Space’.

 Each user space has a separate page table.

 The MMU uses the page table to determine the address of the table to be used in the

translation process.

 Hence by changing the contents of this register, the OS can switch from one space to

another.

 The process has two stages. They are,

 User State

 Supervisor state.

User State:

 In this state,the processor executes the user program.

99

Supervisor State:

 When the processor executes the operating system routines,the processor will be in

supervisor state.

Privileged Instruction:

 In user state,the machine instructions cannot be executed.Hence a user program is

prevented from accessing the page table of other user spaces or system spaces.

 The control bits in each entry can be set to control the access privileges granted to

each program.

 Ie)One program may be allowed to read/write a given page,while the other programs

may be given only red access.

9.SECONDARY STORAGE:

 The Semi-conductor memories donot provide all the storage capability.

 The Secondary storage devices provide larger storage requirements.

 Some of the Secondary Storage devices are,

 Magnetic Disk

 Optical Disk

 Magnetic Tapes.

Magnetic Disk:

 Magnetic Disk system consists o one or more disk mounted on a common spindle.

 A thin magnetic film is deposited on each disk, usually on both sides.

 The disk are placed in a rotary drive so that the magnetized surfaces move in close

proximity to read /write heads.

 Each head consists of magnetic yoke & magnetizing coil.

 Digital information can be stored on the magnetic film by applying the current pulse

of suitable polarity to the magnetizing coil.

 Only changes in the magnetic field under the head can be sensed during the Read

operation.

 Therefore if the binary states 0 & 1 are represented by two opposite states of

magnetization, a voltage is induced in the head only at 0-1 and at 1-0 transition in the

bit stream.

 A consecutive (long string) of 0’s & 1’s are determined by using the clock which is

mainly used for synchronization.

 Phase Encoding or Manchester Encoding is the technique to combine the clocking

information with data.

 The Manchester Encoding describes that how the self-clocking scheme is

implemented.

100

Fig:Mechanical Structure

 The Read/Write heads must be maintained at a very small distance from the moving

disk surfaces in order to achieve high bit densities.

 When the disk are moving at their steady state, the air pressure develops between the

disk surfaces & the head & it forces the head away from the surface.

 The flexible spring connection between head and its arm mounting permits the head

to fly at the desired distance away from the surface.

Wanchester Technology:

 Read/Write heads are placed in a sealed, air –filtered enclosure called the Wanchester

Technology.

 In such units, the read/write heads can operate closure to magnetic track surfaces

because the dust particles which are a problem in unsealed assemblies are absent.

Merits:

 It have a larger capacity for a given physical size.

 The data intensity is high because the storage medium is not exposed to

contaminating elements.

 The read/write heads of a disk system are movable.

 The disk system has 3 parts.They are,

 Disk Platter(Usually called Disk)

 Disk Drive(spins the disk & moves Read/write heads)

 Disk Controller(controls the operation of the system.)

101

Fig:Organizing & Accessing the data on disk

 Each surface is divided into concentric tracks.

 Each track is divided into sectors.

 The set of corresponding tracks on all surfaces of a stack of disk form a logical

cylinder.

 The data are accessed by specifying the surface number,track number and the

sector number.

 The Read/Write operation start at sector boundaries.

 Data bits are stored serially on each track.

 Each sector usually contains 512 bytes.

Sector header -> contains identification information.

 It helps to find the desired sector on the selected track.

ECC (Error checking code)- used to detect and correct errors.

 An unformatted disk has no information on its tracks.

 The formatting process divides the disk physically into tracks and sectors and this

process may discover some defective sectors on all tracks.

 The disk controller keeps a record of such defects.

 The disk is divided into logical partitions. They are,

 Primary partition

 Secondary partition

 In the diag, Each track has same number of sectors.

 So all tracks have same storage capacity.

 Thus the stored information is packed more densely on inner track than on outer track.

Access time

 There are 2 components involved in the time delay between receiving an address and

the beginning of the actual data transfer. They are,

 Seek time

 Rotational delay / Latency

Seek time – Time required to move the read/write head to the proper track.

Latency – The amount of time that elapses after the head is positioned over the correct track

until the starting position of the addressed sector passes under the read/write head.

102

 Seek time + Latency = Disk access time

Typical disk

One inch disk- weight=1 ounce, size -> comparable to match book

 Capacity -> 1GB

Inch disk has the following parameter

Recording surface=20

Tracks=15000 tracks/surface

Sectors=400.

Each sector stores 512 bytes of data

Capacity of formatted disk=20x15000x400x512=60x10
9

=60GB

Seek time=3ms

Platter rotation=10000 rev/min

Latency=3ms

Internet transfer rate=34MB/s

Data Buffer / cache

 A disk drive that incorporates the required SCSI circuit is referred as SCSI drive.

 The SCSI can transfer data at higher rate than the disk tracks.

 An efficient method to deal with the possible difference in transfer rate between disk

and SCSI bus is accomplished by including a data buffer.

 This buffer is a semiconductor memory.

 The data buffer can also provide cache mechanism for the disk (ie) when a read

request arrives at the disk, then controller first check if the data is available in the

cache(buffer).

 If the data is available in the cache, it can be accessed and placed on SCSI bus . If it is

not available then the data will be retrieved from the disk.

Disk Controller

 The disk controller acts as interface between disk drive and system bus.

 The disk controller uses DMA scheme to transfer data between disk and main

memory.

 When the OS initiates the transfer by issuing Read/Write request, the controllers

register will load the following information. They are,

 Main memory address(address of first main memory location of the block of words

involved in the transfer)

103

 Disk address(The location of the sector containing the beginning of the desired block

of words)(number of words in the block to be transferred).

Sector header -> contains identification information.

 It helps to find the desired sector on the selected track.

ECC (Error checking code)- used to detect and correct errors.

 An unformatted disk has no information on its tracks.

 The formatting process divides the disk physically into tracks and sectors and this

process may discover some defective sectors on all tracks.

The disk controller keeps a record of such defects.

The disk is divided into logical partitions. They are,

 Primary partition

 Secondary partition

Each track has same number of sectors.

So all tracks have same storage capacity.

Thus the stored information is packed more densely on inner track than on outer track.

Access time

 There are 2 components involved in the time delay between receiving an address and

the beginning of the actual data transfer. They are,

 Seek time

 Rotational delay / Latency

Seek time – Time required to move the read/write head to the proper track.

Latency – The amount of time that elapses after the head is positioned over the correct track

until the starting position of the addressed sector passes under the read/write head.

 Seek time + Latency = Disk access time

Typical disk

 One inch disk- weight=1 ounce, size -> comparable to match book

 Capacity -> 1GB

3.5 inch disk has the following parameter

104

Recording surface=20

Tracks=15000 tracks/surface

Sectors=400.

Each sector stores 512 bytes of data

Capacity of formatted disk=20x15000x400x512=60x10
9

=60GB

Seek time=3ms

Platter rotation=10000 rev/min

Latency=3ms

Internet transfer rate=34MB/s

Data Buffer / cache

 A disk drive that incorporates the required SCSI circuit is referred as SCSI drive.

The SCSI can transfer data at higher rate than the disk tracks.

An efficient method to deal with the possible difference in transfer rate between disk and

SCSI bus is accomplished by including a data buffer.

This buffer is a semiconductor memory.

The data buffer can also provide cache mechanism for the disk (ie) when a read request

arrives at the disk, then controller first check if the data is available in the cache(buffer).

If the data is available in the cache, it can be accessed and placed on SCSI bus . If it is not

available then the data will be retrieved from the disk.

105

UNIT V - I/O ORGANIZATION

1.1 ACCESSING I/O DEVICES:-

 A simple arrangement to connect I/O devices to a computer is to use a single bus structure. It

consists of three sets of lines to carry

 Address

 Data

 Control Signals.

 When the processor places a particular address on address lines, the devices that recognize this

address responds to the command issued on the control lines.

 The processor request either a read or write operation and the requested data are transferred over

the data lines.

 When I/O devices & memory share the same address space, the arrangement is called memory

mapped I/O.

Single Bus Structure

 Bus

 ..…

Eg:-

Move DATAIN, Ro Reads the data from DATAIN then into processor register Ro.

Move Ro, DATAOUT Send the contents of register Ro to location DATAOUT.

DATAIN Input buffer associated with keyboard.

DATAOUT Output data buffer of a display unit / printer.

 Fig: I/O Interface for an Input Device

 Address line

 Data line

 Control line

 I/O interface

1.2.Address Decoder:

 It enables the device to recognize its address when the address appears on address lines.

Processor Memory

I/O device n I/O device 1

Address

decoder

Control

circuits

Data & status

register

Input device.

106

Data register It holds the data being transferred to or from the processor.

Status register It contains infn/. Relevant to the operation of the I/O devices.

 The address decoder, data & status registers and the control circuitry required to co-ordinate

I/O transfers constitute the device’s I/F circuit.

 For an input device, SIN status flag in used SIN = 1, when a character is entered at the

keyboard.

 For an output device, SOUT status flag is used SIN = 0, once the char is read by processor.

Eg

DIR Q Interrupt Request for display.

KIR Q Interrupt Request for keyboard.

KEN keyboard enable.

DEN Display Enable.

SIN, SOUT status flags.

The data from the keyboard are made available in the DATAIN register & the data sent to the display

are stored in DATAOUT register.

1.3.Program:

WAIT K Move # Line, Ro

 Test Bit #0, STATUS

 Branch = 0 WAIT K

 Move DATAIN, R1

WAIT D Test Bit #1, STATUS

 Branch = 0 WAIT D

 Move R1, DATAOUT

 Move R1, (Ro)+

 Compare #OD, R1

 Branch = 0 WAIT K

 Move #DOA, DATAOUT

 Call PROCESS

1.4.EXPLANATION:

 This program, reads a line of characters from the keyboard & stores it in a memory buffer

starting at locations LINE.

107

 Then it calls the subroutine “PROCESS” to process the input line.

 As each character is read, it is echoed back to the display.

 Register Ro is used as a updated using Auto – increment mode so that successive characters

are stored in successive memory location.

 Each character is checked to see if there is carriage return (CR), char, which has the ASCII

code 0D(hex).

 If it is, a line feed character (on) is sent to more the cursor one line down on the display &

subroutine PROCESS is called. Otherwise, the program loops back to wait for another

character from the keyboard.

1.5.PROGRAM CONTROLLED I/O:

 Here the processor repeatedly checks a status flag to achieve the required synchronization

between Processor & I/O device.(ie) the processor polls the device.

 There are 2 mechanisms to handle I/o operations. They are,

 Interrupt, -

 DMA (Synchronization is achieved by having I/O device send special over the bus where

is ready for data transfer operation)

1.6.DMA:

 Synchronization is achieved by having I/O device send special over the bus where is ready for

data transfer operation)

 It is a technique used for high speed I/O device.

 Here, the input device transfer data directly to or from the memory without continuous

involvement by the processor.

2.1.INTERRUPTS:

 When a program enters a wait loop, it will repeatedly check the device status. During this

period, the processor will not perform any function.

 The Interrupt request line will send a hardware signal called the interrupt signal to the

processor.

 On receiving this signal, the processor will perform the useful function during the waiting

period.

 The routine executed in response to an interrupt request is called Interrupt Service Routine.

 The interrupt resembles the subroutine calls.

 Fig:Transfer of control through the use of interrupts

108

 The processor first completes the execution of instruction i Then it loads the PC(Program

Counter) with the address of the first instruction of the ISR.

 After the execution of ISR, the processor has to come back to instruction i + 1.

 Therefore, when an interrupt occurs, the current contents of PC which point to i +1 is put in

temporary storage in a known location.

 A return from interrupt instruction at the end of ISR reloads the PC from that temporary

storage location, causing the execution to resume at instruction i+1.

 When the processor is handling the interrupts, it must inform the device that its request has

been recognized so that it remove its interrupt requests signal.

 This may be accomplished by a special control signal called the interrupt acknowledge

signal.

 The task of saving and restoring the information can be done automatically by the processor.

 The processor saves only the contents of program counter & status register (ie) it saves

only the minimal amount of information to maintain the integrity of the program execution.

 Saving registers also increases the delay between the time an interrupt request is received and

the start of the execution of the ISR. This delay is called the Interrupt Latency.

 Generally, the long interrupt latency in unacceptable.

 The concept of interrupts is used in Operating System and in Control Applications, where

processing of certain routines must be accurately timed relative to external events. This

application is also called as real-time processing.

Interrupt Hardware:

Fig:An equivalent circuit for an open drain bus used to implement a common interrupt request

line

 A single interrupt request line may be used to serve ‘n’ devices. All devices are connected to

the line via switches to ground.

 To request an interrupt, a device closes its associated switch, the voltage on INTR line drops

to 0(zero).

 If all the interrupt request signals (INTR1 to INTRn) are inactive, all switches are open and

the voltage on INTR line is equal to Vdd.

 When a device requests an interrupts, the value of INTR is the logical OR of the requests

from individual devices.

 (ie) INTR = INTR1+…………+INTRn

INTR It is used to name the INTR signal on common line it is active in the low voltage state.

 Open collector (bipolar ckt) or Open drain (MOS circuits) is used to drive INTR line.

 The Output of the Open collector (or) Open drain control is equal to a switch to the ground

that is open when gates input is in ‘0’ state and closed when the gates input is in ‘1’ state.

109

 Resistor ‘R’ is called a pull-up resistor because it pulls the line voltage upto the high voltage

state when the switches are open.

Enabling and Disabling Interrupts:

 The arrival of an interrupt request from an external device causes the processor to suspend the

execution of one program & start the execution of another because the interrupt may alter the

sequence of events to be executed.

 INTR is active during the execution of Interrupt Service Routine.

 There are 3 mechanisms to solve the problem of infinite loop which occurs due to successive

interruptions of active INTR signals.

 The following are the typical scenario.

 The device raises an interrupt request.

 The processor interrupts the program currently being executed.

 Interrupts are disabled by changing the control bits is PS (Processor Status register)

 The device is informed that its request has been recognized & in response, it deactivates

the INTR signal.

 The actions are enabled & execution of the interrupted program is resumed.

Edge-triggered:

 The processor has a special interrupt request line for which the interrupt handling circuit

responds only to the leading edge of the signal. Such a line said to be edge-triggered.

Handling Multiple Devices:

 When several devices requests interrupt at the same time, it raises some questions. They are.

 How can the processor recognize the device requesting an interrupt?

 Given that the different devices are likely to require different ISR, how can the

processor obtain the starting address of the appropriate routines in each case?

 Should a device be allowed to interrupt the processor while another interrupt is being

serviced?

 How should two or more simultaneous interrupt requests be handled?

Polling Scheme:

 If two devices have activated the interrupt request line, the ISR for the selected device (first

device) will be completed & then the second request can be serviced.

 The simplest way to identify the interrupting device is to have the ISR polls all the

encountered with the IRQ bit set is the device to be serviced

 IRQ (Interrupt Request) -> when a device raises an interrupt requests, the status register IRQ

is set to 1.

Merit:

It is easy to implement.

Demerit:

 The time spent for interrogating the IRQ bits of all the devices that may not be requesting any

service.

Vectored Interrupt:

 Here the device requesting an interrupt may identify itself to the processor by sending a

special code over the bus & then the processor start executing the ISR.

 The code supplied by the processor indicates the starting address of the ISR for the device.

110

 The code length ranges from 4 to 8 bits.

 The location pointed to by the interrupting device is used to store the staring address to ISR.

 The processor reads this address, called the interrupt vector & loads into PC.

 The interrupt vector also includes a new value for the Processor Status Register.

 When the processor is ready to receive the interrupt vector code, it activate the interrupt

acknowledge (INTA) line.

Interrupt Nesting:

Multiple Priority Scheme:

 In multiple level priority scheme, we assign a priority level to the processor that can be

changed under program control.

 The priority level of the processor is the priority of the program that is currently being

executed.

 The processor accepts interrupts only from devices that have priorities higher than its own.

 At the time the execution of an ISR for some device is started, the priority of the processor is

raised to that of the device.

 The action disables interrupts from devices at the same level of priority or lower.

Privileged Instruction:

 The processor priority is usually encoded in a few bits of the Processor Status word. It can

also be changed by program instruction & then it is write into PS. These instructions are

called privileged instruction. This can be executed only when the processor is in supervisor

mode.

 The processor is in supervisor mode only when executing OS routines.

 It switches to the user mode before beginning to execute application program.

Privileged Exception:

 User program cannot accidently or intentionally change the priority of the processor &

disrupts the system operation.

 An attempt to execute a privileged instruction while in user mode, leads to a special type of

interrupt called the privileged exception.

Fig: Implementation of Interrupt Priority using individual Interrupt request acknowledge lines

 Each of the interrupt request line is assigned a different priority level.

 Interrupt request received over these lines are sent to a priority arbitration circuit in the

processor.

 A request is accepted only if it has a higher priority level than that currently assigned to the

processor,

111

Simultaneous Requests:

Daisy Chain:

 The interrupt request line INTR is common to all devices. The interrupt acknowledge line

INTA is connected in a daisy chain fashion such that INTA signal propagates serially through

the devices.

 When several devices raise an interrupt request, the INTR is activated & the processor

responds by setting INTA line to 1. this signal is received by device.

 Device1 passes the signal on to device2 only if it does not require any service.

 If devices1 has a pending request for interrupt blocks that INTA signal & proceeds to put its

identification code on the data lines.

 Therefore, the device that is electrically closest to the processor has the highest priority.

Merits:

 It requires fewer wires than the individual connections.

Arrangement of Priority Groups:

 Here the devices are organized in groups & each group is connected at a different priority

level.

 Within a group, devices are connected in a daisy chain.

Controlling Device Requests:

 KEN Keyboard Interrupt Enable

 DEN Display Interrupt Enable

 KIRQ / DIRQ Keyboard / Display unit requesting an interrupt.

 There are two mechanism for controlling interrupt requests.

 At the devices end, an interrupt enable bit in a control register determines whether the device

is allowed to generate an interrupt requests.

112

 At the processor end, either an interrupt enable bit in the PS (Processor Status) or a priority

structure determines whether a given interrupt requests will be accepted.

Initiating the Interrupt Process:

 Load the starting address of ISR in location INTVEC (vectored interrupt).

 Load the address LINE in a memory location PNTR. The ISR will use this location as a

pointer to store the i/p characters in the memory.

 Enable the keyboard interrupts by setting bit 2 in register CONTROL to 1.

 Enable interrupts in the processor by setting to 1, the IE bit in the processor status register PS.

Exception of ISR:

 Read the input characters from the keyboard input data register. This will cause the interface

circuits to remove its interrupt requests.

 Store the characters in a memory location pointed to by PNTR & increment PNTR.

 When the end of line is reached, disable keyboard interrupt & inform program main.

 Return from interrupt.

Exceptions:

 An interrupt is an event that causes the execution of one program to be suspended and the

execution of another program to begin.

 The Exception is used to refer to any event that causes an interruption.

Kinds of exception:

 Recovery from errors

 Debugging

 Privileged Exception

Recovery From Errors:

 Computers have error-checking code in Main Memory , which allows detection of errors in

the stored data.

 If an error occurs, the control hardware detects it informs the processor by raising an

interrupt.

 The processor also interrupts the program, if it detects an error or an unusual condition while

executing the instance (ie) it suspends the program being executed and starts an execution

service routine.

 This routine takes appropriate action to recover from the error.

Debugging:

 System software has a program called debugger, which helps to find errors in a program.

 The debugger uses exceptions to provide two important facilities

 They are

 Trace

 Breakpoint

Trace Mode:

 When processor is in trace mode , an exception occurs after execution of every instance using

the debugging program as the exception service routine.

113

 The debugging program examine the contents of registers, memory location etc.

 On return from the debugging program the next instance in the program being debugged is

executed

 The trace exception is disabled during the execution of the debugging program.

Break point:

 Here the program being debugged is interrupted only at specific points selected by the user.

 An instance called the Trap (or) software interrupt is usually provided for this purpose.

 While debugging the user may interrupt the program execution after instance ‘I’

 When the program is executed and reaches that point it examine the memory and register

contents.

Privileged Exception:

 To protect the OS of a computer from being corrupted by user program certain instance can

be executed only when the processor is in supervisor mode. These are called privileged

exceptions.

 When the processor is in user mode, it will not execute instance (ie) when the processor is in

supervisor mode , it will execute instance.

3.1.DIRECT MEMORY ACCESS:

 A special control unit may be provided to allow the transfer of large block of data at high

speed directly between the external device and main memory , without continous intervention

by the processor. This approach is called DMA.

 DMA transfers are performed by a control circuit called the DMA Controller.

 To initiate the transfer of a block of words , the processor sends,

 Starting address

 Number of words in the block

 Direction of transfer.

 When a block of data is transferred , the DMA controller increment the memory address for

successive words and keep track of number of words and it also informs the processor by raising

an interrupt signal.

 While DMA control is taking place, the program requested the transfer cannot continue and the

processor can be used to execute another program.

 After DMA transfer is completed, the processor returns to the program that requested the transfer.

Fig:Registes in a DMA Interface

 31 30 1 0

 Status &

 Control Flag

 IRQ Done

 IE

 Starting Address

114

 Word Count

R/W Determines the direction of transfer .

When

 R/W =1, DMA controller read data from memory to I/O device.

 R/W =0, DMA controller perform write operation.

 Done Flag=1, the controller has completed transferring a block of data and is

 ready to receive another command.

 IE=1, it causes the controller to raise an interrupt (interrupt Enabled) after it has

 completed transferring the block of data.

 IRQ=1, it indicates that the controller has requested an interrupt.

Fig: Use of DMA controllers in a computer system

 A DMA controller connects a high speed network to the computer bus . The disk controller

two disks, also has DMA capability and it provides two DMA channels.

 To start a DMA transfer of a block of data from main memory to one of the disks, the

program write s the address and the word count inf. Into the registers of the corresponding

channel of the disk controller.

 When DMA transfer is completed, it will be recorded in status and control registers of the

DMA channel (ie) Done bit=IRQ=IE=1.

Cycle Stealing:

 Requests by DMA devices for using the bus are having higher priority than processor requests

.

 Top priority is given to high speed peripherals such as ,

 Disk

 High speed Network Interface and Graphics display device.

 Since the processor originates most memory access cycles, the DMA controller can be said to

steal the memory cycles from the processor.

 This interviewing technique is called Cycle stealing.

Burst Mode:
 The DMA controller may be given exclusive access to the main memory to transfer a block of

data without interruption. This is known as Burst/Block Mode

115

Bus Master:

 The device that is allowed to initiate data transfers on the bus at any given time is called the

bus master.

Bus Arbitration:

 It is the process by which the next device to become the bus master is selected and the bus

mastership is transferred to it.

Types:
There are 2 approaches to bus arbitration. They are,

 Centralized arbitration (A single bus arbiter performs arbitration)

 Distributed arbitration (all devices participate in the selection of next bus master).

Centralized Arbitration:

 Here the processor is the bus master and it may grants bus mastership to one of its DMA

controller.

 A DMA controller indicates that it needs to become the bus master by activating the Bus

Request line (BR) which is an open drain line.

 The signal on BR is the logical OR of the bus request from all devices connected to it.

 When BR is activated the processor activates the Bus Grant Signal (BGI) and indicated the

DMA controller that they may use the bus when it becomes free.

 This signal is connected to all devices using a daisy chain arrangement.

 If DMA requests the bus, it blocks the propagation of Grant Signal to other devices and it

indicates to all devices that it is using the bus by activating open collector line, Bus Busy

(BBSY).

Fig:A simple arrangement for bus arbitration using a daisy chain

Fig: Sequence of signals during transfer of bus mastership for the devices

116

 The timing diagram shows the sequence of events for the devices connected to the processor

is shown.

 DMA controller 2 requests and acquires bus mastership and later releases the bus.

 During its tenture as bus master, it may perform one or more data transfer.

 After it releases the bus, the processor resources bus mastership

Distributed Arbitration:

It means that all devices waiting to use the bus have equal responsibility in carrying out the arbitration

process.

Fig:A distributed arbitration scheme

 Each device on the bus is assigned a 4 bit id.

 When one or more devices request the bus, they assert the Start-Arbitration signal & place

their 4 bit ID number on four open collector lines, ARB0 to ARB3.

 A winner is selected as a result of the interaction among the signals transmitted over these

lines.

 The net outcome is that the code on the four lines represents the request that has the highest

ID number.

 The drivers are of open collector type. Hence, if the i/p to one driver is equal to 1, the i/p to

another driver connected to the same bus line is equal to ‘0’(ie. bus the is in low-voltage

state).

Eg:

 Assume two devices A & B have their ID 5 (0101), 6(0110) and their code is 0111.

 Each devices compares the pattern on the arbitration line to its own ID starting from MSB.

 If it detects a difference at any bit position, it disables the drivers at that bit position. It does

this by placing ‘0’ at the i/p of these drivers.

 In our eg. ‘A’ detects a difference in line ARB1, hence it disables the drivers on lines ARB1

& ARB0.

 This causes the pattern on the arbitration line to change to 0110 which means that ‘B’ has

won the contention.

4.1.Buses:

117

 A bus protocol is the set of rules that govern the behavior of various devices connected to the

bus ie, when to place information in the bus, assert control signals etc.

 The bus lines used for transferring data is grouped into 3 types. They are,

 Address line

 Data line

 Control line.

Control signalsSpecifies that whether read / write operation has to performed.

 It also carries timing infn/. (ie) they specify the time at which the

 processor & I/O devices place the data on the bus & receive the data

 from the bus.

 During data transfer operation, one device plays the role of a ‘Master’.

 Master device initiates the data transfer by issuing read / write command on the bus. Hence it

is also called as ‘Initiator’.

 The device addressed by the master is called as Slave / Target.

Types of Buses:

There are 2 types of buses. They are,

 Synchronous Bus

 Asynchronous Bus.

Synchronous Bus:-

 In synchronous bus, all devices derive timing information from a common clock line.

 Equally spaced pulses on this line define equal time.

 During a ‘bus cycle’, one data transfer on take place.

 The ‘crossing points’ indicate the tone at which the patterns change.

 A ‘signal line’ in an indeterminate / high impedance state is represented by an intermediate

half way between the low to high signal levels.

Fig:Timing of an input transfer of a synchronous bus.

 At time to, the master places the device address on the address lines & sends an appropriate

command on the control lines.

 In this case, the command will indicate an input operation & specify the length of the operand

to be read.

 The clock pulse width t1 – t0 must be longer than the maximum delay between devices

connected to the bus.

 The clock pulse width should be long to allow the devices to decode the address & control

signals so that the addressed device can respond at time t1.

 The slaves take no action or place any data on the bus before t1.

118

Fig:A detailed timing diagram for the input transfer

 The picture shows two views of the signal except the clock.

 One view shows the signal seen by the master & the other is seen by the salve.

 The master sends the address & command signals on the rising edge at the beginning of clock

period (t0). These signals do not actually appear on the bus until tam.

 Some times later, at tAS the signals reach the slave.

 The slave decodes the address & at t1, it sends the requested data.

 At t2, the master loads the data into its i/p buffer.

 Hence the period t2, tDM is the setup time for the masters i/p buffer.

 The data must be continued to be valid after t2, for a period equal to the hold time of that

buffers.

Demerits:
 The device does not respond.

 The error will not be detected.

Multiple Cycle Transfer:-

 During, clock cycle1, the master sends address & cmd infn/. On the bus’ requesting a ‘read’

operation.

 The slave receives this information & decodes it.

 At the active edge of the clock (ie) the beginning of clock cycel2, it makes accession to

respond immediately.

 The data become ready & are placed in the bus at clock cycle3.

 At the same times, the slave asserts a control signal called ‘slave-ready’.

 The master which has been waiting for this signal, strobes, the data to its i/p buffer at the end

of clock cycle3.

 The bus transfer operation is now complete & the master sends a new address to start a new

transfer in clock cycle4.

 The ‘slave-ready’ signal is an acknowledgement form the slave to the master confirming that

valid data has been sent.

119

Fig:An input transfer using multiple clock cycles

Asynchronous Bus:-

 An alternate scheme for controlling data transfer on. The bus is based on the use of

‘handshake’ between Master & the Slave. The common clock is replaced by two timing

control lines.

 They are

 Master–ready

 Slave ready.

Fig:Handshake control of data transfer during an input operation

The handshake protocol proceed as follows :

At t0 The master places the address and command information on the bus and

 all devices on the bus begin to decode the information

120

At t1 The master sets the Master ready line to 1 to inform the I/O devices that

 the address and command information is ready.

 The delay t1 – t0 is intended to allow for any skew that may occurs on the bus.

 The skew occurs when two signals simultaneously transmitted from one source arrive at the

destination at different time.

 Thus to guarantee that the Master ready signal does not arrive at any device a head of the

address and command information the delay t1 – t0 should be larger than the maximum

possible bus skew.

At t2 The selected slave having decoded the address and command information

 performs the required i/p operation by placing the data from its data

 register on the data lines. At the same time, it sets the “slave – Ready”

 signal to 1.

At t3 The slave ready signal arrives at the master indicating that the i/p data are

 available on the bus.

At t4 The master removes the address and command information on the bus.

 The delay between t3 and t4 is again intended to allow for bus skew.

 Errorneous addressing may take place if the address, as seen by some

 device on the bus, starts to change while the master – ready signal is still

 equal to 1.

At t5 When the device interface receives the 1 to 0 tranitions of the Master –

 ready signal. It removes the data and the slave – ready signal from the bus.

 This completes the i/p transfer.

 In this diagram, the master place the output data on the data lines and at the same time it

transmits the address and command information.

 The selected slave strobes the data to its o/p buffer when it receives the Master-ready signal

and it indicates this by setting the slave – ready signal to 1.

 At time t0 to t1 and from t3 to t4, the Master compensates for bus.

 A change of state is one signal is followed by a change is the other signal. Hence this scheme

is called as Full Handshake.

 It provides the higher degree of flexibility and reliability.

INTERFACE CIRCUITS:

The interface circuits are of two types.They are

 Parallel Port

 Serial Port

Parallel Port:

121

 The output of the encoder consists of the bits that represent the encoded character and one

signal called valid,which indicates the key is pressed.

 The information is sent to the interface circuits,which contains a data register,DATAIN and a

status flag SIN.

 When a key is pressed, the Valid signal changes from 0 to1,causing the ASCII code to be

loaded into DATAIN and SIN set to 1.

 The status flag SIN set to 0 when the processor reads the contents of the DATAIN register.

 The interface circuit is connected to the asynchronous bus on which transfers are controlled

using the Handshake signals Master ready and Slave-ready.

Serial Port:

A serial port used to connect the processor to I/O device that requires transmission one bit at a time.

It is capable of communicating in a bit serial fashion on the device side and in a bit parallel fashion on

the bus side.

STANDARD I/O INTERFACE:

 A standard I/O Interface is required to fit the I/O device with an Interface circuit.

 The processor bus is the bus defined by the signals on the processor chip itself.

 The devices that require a very high speed connection to the processor such as the main

memory, may be connected directly to this bus.

 The bridge connects two buses, which translates the signals and protocols of one bus into

another.

 The bridge circuit introduces a small delay in data transfer between processor and the devices.

122

Fig:Example of a Computer System using different Interface Standards

 Processor Bus

 SCSI Bus

There are 3 Bus standards. They are,

 PCI (Peripheral Component Inter Connect)

 SCSI (Small Computer System Interface)

 USB (Universal Serial Bus)

 PCI defines an expansion bus on the motherboard.

 SCSI and USB are used for connecting additional devices both inside and outside the

computer box.

 SCSI bus is a high speed parallel bus intended for devices such as disk and video display.

 USB uses a serial transmission to suit the needs of equipment ranging from keyboard

keyboard to game control to internal connection.

 IDE (Integrated Device Electronics) disk is compatible with ISA which shows the

connection to an Ethernet.

PCI:

 PCI is developed as a low cost bus that is truly processor independent.

 It supports high speed disk, graphics and video devices.

 PCI has plug and play capability for connecting I/O devices.

 To connect new devices, the user simply connects the device interface board to the bus.

Data Transfer:

 The data are transferred between cache and main memory is the bursts of several words and

they are stored in successive memory locations.

Processor Main Memory

Bridge

Additional

Memory

SCS /

Controller

Ethernet i/f USB

Controller

ISA i/f

Disk

Controller

CD ROM

Controller

DISK 1 DISK 2 CD ROM

Video

Key Board GAME

IDE Disk

123

 When the processor specifies an address and request a ‘read’ operation from memory, the

memory responds by sending a sequence of data words starting at that address.

 During write operation, the processor sends the address followed by sequence of data words

to be written in successive memory locations.

 PCI supports read and write operation.

 A read / write operation involving a single word is treated as a burst of length one.

 PCI has three address spaces. They are

 Memory address space

 I/O address space

 Configuration address space

 I/O address space → It is intended for use with processor

 Configuration space → It is intended to give PCI, its plug and play

 capability.

 PCI Bridge provides a separate physical connection to main memory.

 The master maintains the address information on the bus until data transfer is completed.

 At any time, only one device acts as bus master.

 A master is called ‘initiator’ in PCI which is either processor or DMA.

 The addressed device that responds to read and write commands is called a target.

 A complete transfer operation on the bus, involving an address and bust of data is called a

‘transaction’.

Fig:Use of a PCI bus in a Computer system

PCI

BUS

Data Transfer Signals on PCI Bus:

Name Function

CLK 33 MHZ / 66 MHZ clock

FRAME # Sent by the indicator to indicate the duration of transaction

AD 32 address / data line

C/BE # 4 command / byte Enable Lines

IRDY, TRDYA Initiator Ready, Target Ready Signals

DEVSEL # A response from the device indicating that it has

 recognized its address and is ready for data transfer

 transaction.

IDSEL # Initialization Device Select

Individual word transfers are called ‘phases’.

HOST

PCI Bridge Main Memory

DISK PRINTER Ethernet i/f

124

Fig :Read operation an PCI Bus

 In Clock cycle1, the processor asserts FRAME # to indicate the beginning of a transaction ; it

sends the address on AD lines and command on C/BE # Lines.

 Clock cycle2 is used to turn the AD Bus lines around ; the processor ; The processor removes

the address and disconnects its drives from AD lines.

 The selected target enable its drivers on AD lines and fetches the requested data to be placed

on the bus.

 It asserts DEVSEL # and maintains it in asserted state until the end of the transaction.

 C/BE # is used to send a bus command in clock cycle and it is used for different purpose

during the rest of the transaction.

 During clock cycle 3, the initiator asserts IRDY #, to indicate that it is ready to receive data.

 If the target has data ready to send then it asserts TRDY #. In our eg, the target sends 3 more

words of data in clock cycle 4 to 6.

 The indicator uses FRAME # to indicate the duration of the burst, since it read 4 words, the

initiator negates FRAME # during clock cycle 5.

 After sending the 4
th
 word, the target disconnects its drivers and negates DEVSEL # during

clockcycle 7.

Fig: A read operation showing the role of IRDY# / TRY#

125

 It indicates the pause in the middle of the transaction.

 The first and words are transferred and the target sends the 3
rd

 word in cycle 5.

 But the indicator is not able to receive it. Hence it negates IRDY#.

 In response the target maintains 3
rd

 data on AD line until IRDY is asserted again.

 In cycle 6, the indicator asserts IRDY. But the target is not ready to transfer the fourth word

immediately, hence it negates TRDY in cycle 7. Hence it sends the 4
th
 word and asserts

TRDY# at cycle 8.

Device Configuration:

 The PCI has a configuration ROM memory that stores information about that device.

 The configuration ROM’s of all devices are accessible in the configuration address space.

 The initialization s/w read these ROM’s whenever the S/M is powered up or reset

 In each case, it determines whether the device is a printer, keyboard, Ethernet interface or

disk controller.

 Devices are assigned address during initialization process and each device has an w/p signal

called IDSEL # (Initialization device select) which has 21 address lines (AD) (AD to AD31).

 During configuration operation, the address is applied to AD i/p of the device and the

corresponding AD line is set to and all other lines are set to 0.

 AD11 - AD31 Upper address line

 A00 - A10 Lower address line → Specify the type of the operation and to

 access the content of device configuration

 ROM.

 The configuration software scans all 21 locations.

 PCI bus has interrupt request lines.

 Each device may requests an address in the I/O space or memory space

Electrical Characteristics:

 The connectors can be plugged only in compatible motherboards PCI bus can operate with

either 5 – 33V power supply.

 The motherboard can operate with signaling system.

SCSI Bus:- (Small Computer System Interface)

 SCSI refers to the standard bus which is defined by ANSI (American National Standard

Institute).

 SCSI bus the several options. It may be,

Narrow bus It has 8 data lines & transfers 1 byte at a time.

Wide bus It has 16 data lines & transfer 2 byte at a time.

Single-Ended Transmission Each signal uses separate wire.

HVD (High Voltage Differential) It was 5v (TTL cells)

LVD (Low Voltage Differential) It uses 3.3v

 Because of these various options, SCSI connector may have 50, 68 or 80 pins.

 The data transfer rate ranges from 5MB/s to 160MB/s 320Mb/s, 640MB/s.

 The transfer rate depends on,

126

 Length of the cable

 Number of devices connected.

 To achieve high transfer rat, the bus length should be 1.6m for SE signaling and 12m for LVD

signaling.

 The SCSI bus us connected to the processor bus through the SCSI controller.

 The data are stored on a disk in blocks called sectors.

 Each sector contains several hundreds of bytes. These data will not be stored in contiguous

memory location.

 SCSI protocol is designed to retrieve the data in the first sector or any other selected sectors.

 Using SCSI protocol, the burst of data are transferred at high speed.

 The controller connected to SCSI bus is of 2 types. They are,

 Initiator

 Target

Initiator:

 It has the ability to select a particular target & to send commands specifying the operation to

be performed.

 They are the controllers on the processor side.

Target:

 The disk controller operates as a target.

 It carries out the commands it receive from the initiator. The initiator establishes a logical

connection with the intended target.

Steps:

Consider the disk read operation, it has the following sequence of events.

 The SCSI controller acting as initiator, contends process, it selects the target controller &

hands over control of the bus to it.

 The target starts an output operation, in response to this the initiator sends a command

specifying the required read operation.

 The target that it needs to perform a disk seek operation, sends a message to the initiator

indicating that it will temporarily suspends the connection between them.

 Then it releases the bus.

 The target controller sends a command to disk drive to move the read head to the first sector

involved in the requested read in a data buffer. When it is ready to begin transferring data to

initiator, the target requests control of the bus. After it wins arbitration, it reselects the

initiator controller, thus restoring the suspended connection.

 The target transfers the controls of the data buffer to the initiator & then suspends the

connection again. Data are transferred either 8 (or) 16 bits in parallel depending on the width

of the bus.

 The target controller sends a command to the disk drive to perform another seek operation.

Then it transfers the contents of second disk sector to the initiator. At the end of this transfer,

the logical connection b/w the two controller is terminated.

 As the initiator controller receives the data, if stores them into main memory using DMA

approach.

 The SCSI controller sends an interrupt to the processor to inform it that the requested

operation has been completed.

Bus Signals:-

 The bus has no address lines.

 Instead, it has data lines to identify the bus controllers involved in the selection / reselection /

arbitration process.

 For narrow bus, there are 8 possible controllers numbered from 0 to 7.

 For a wide bus, there are 16 controllers.

127

 Once a connection is established b/w two controllers, these is no further need for addressing

& the datalines are used to carry the data.

SCSI bus signals:

Category Name Function

Data - DB (0) to DB (7)

- DB(P)

Datalines

Parity bit for data bus.

Phases - BSY

- SEL

Busy

Selection

Information type - C/D

- MSG

Control / Data

Message

Handshake - REQ

- ACK

Request

Acknowledge

Direction of transfer I/O Input / Output

Other - ATN

- RST

Attention

Reset.

 All signal names are proceeded by minus sign.

 This indicates that the signals are active or that the dataline is equal to 1, when they are in the

low voltage state.

Phases in SCSI Bus:-

 The phases in SCSI bus operation are,

 Arbitration

 Selection

 Information transfer

 Reselection

Arbitration:-

 When the –BSY signal is in inactive state, the bus will he free & any controller can request

the use of the bus.

 Since each controller may generate requests at the same time, SCSI uses distributed

arbitration scheme.

 Each controller on the bus is assigned a fixed priority with controller 7 having the highest

priority.

 When –BSY becomes active, all controllers that are requesting the bus examines the data

lines & determine whether the highest priority device is requesting the bus at the same time.

 The controller using the highest numbered line realizes that it has won the arbitration process.

 At that time, all other controllers disconnect from the bus & wait for –BSY to become

inactive again.

Fig: Arbitration and selection on the SCSI bus.Device 6 wins arbitration and select device 2

128

Selection:

 Here Device wons arbitration and it asserts –BSY and –DB6 signals.

 The Select Target Controller responds by asserting –BSY.

 This informs that the connection that it requested is established.

Reselection:

 The connection between the two controllers has been reestablished,with the target in control

the bus as required for data transfer to proceed.

USB – Universal Serial Bus:

 USB supports 3 speed of operation. They are,

 Low speed (1.5Mb/s)

 Full speed (12mb/s)

 High speed (480mb/s)

 The USB has been designed to meet the key objectives. They are,

 It provide a simple, low cost & easy to use interconnection s/m that overcomes the difficulties

due to the limited number of I/O ports available on a computer.

 It accommodate a wide range of data transfer characteristics for I/O devices including

telephone & Internet connections.

 Enhance user convenience through ‘Plug & Play’ mode of operation.

Port Limitation:-

 Normally the system has a few limited ports.

 To add new ports, the user must open the computer box to gain access to the internal

expansion bus & install a new interface card.

 The user may also need to know to configure the device & the s/w.

Merits of USB:-

USB helps to add many devices to a computer system at any time without opening the computer box.

Device Characteristics:-

 The kinds of devices that may be connected to a cptr cover a wide range of functionality.

 The speed, volume & timing constrains associated with data transfer to & from devices varies

significantly.

Eg:1 Keyboard Since the event of pressing a key is not synchronized to any other event in a

computer system, the data generated by keyboard are called asynchronous.

The data generated from keyboard depends upon the speed of the human operator which is about

100bytes/sec.

Eg:2 Microphone attached in a cptr s/m internally / externally

 The sound picked up by the microphone produces an analog electric signal, which must be

converted into digital form before it can be handled by the cptr.

 This is accomplished by sampling the analog signal periodically.

129

 The sampling process yields a continuous stream of digitized samples that arrive at regular

intervals, synchronized with the sampling clock. Such a stream is called isochronous (ie)

successive events are separated by equal period of time.

 If the sampling rate in ‘S’ samples/sec then the maximum frequency captured by sampling

process is s/2.

 A standard rate for digital sound is 44.1 KHz.

Requirements for sampled Voice:-

 It is important to maintain precise time (delay) in the sampling & replay process.

 A high degree of jitter (Variability in sampling time) is unacceptable.

Eg-3:Data transfer for Image & Video:-

 The transfer of images & video require higher bandwidth.

 The bandwidth is the total data transfer capacity of a communication channel.

 To maintain high picture quality, The image should be represented by about 160kb, & it is

transmitted 30 times per second for a total bandwidth if 44MB/s.

Plug & Play:-

 The main objective of USB is that it provides a plug & play capability.

 The plug & play feature enhances the connection of new device at any time, while the system

is operation.

 The system should,

 Detect the existence of the new device automatically.

 Identify the appropriate device driver s/w.

 Establish the appropriate addresses.

 Establish the logical connection for communication.

USB Architecture:-

 USB has a serial bus format which satisfies the low-cost & flexibility requirements.

 Clock & data information are encoded together & transmitted as a single signal.

 There are no limitations on clock frequency or distance arising form data skew, & hence it is

possible to provide a high data transfer bandwidth by using a high clock frequency.

 To accommodate a large no/. of devices that can be added / removed at any time, the USB has

the tree structure.

USB Tree Structure

 Each node of the tree has a device called ‘hub’, which acts as an intermediate control point

b/w host & I/O devices.

 At the root of the tree, the ‘root hub’ connects the entire tree to the host computer.

 The leaves of the tree are the I/O devices being served.

130

QUESTION BANK

SUBJECT CODE: CS2253 YEAR : II SEM : IV

SUBJECT NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT I BASIC STRUCTURE OF COMPUTERS

PART-A (2 MARKS)

1. Define the term Computer Architecture.

2. Define Multiprocessing.

3. What is meant by instruction?

4. What is Bus? Draw the single bus structure.

5. Define Pipeline processing.

6. Draw the basic functional units of a computer.

7. Briefly explain Primary storage and secondary storage.

8. What is register?

9. Define RAM.

10. Give short notes on system software.

11. Write down the operation of control unit?

12. Define Memory address register.

13. Define Addressing modes.

14. Write the basic performance equation?

15. Define clock rate.

16. List out the various addressing techniques.

17. Draw the flow of Instruction cycle.

18. Suggest about Program counter.

19. List out the types in displacement addressing.

20. What is meant by stack addressing?

21. Define carry propagation delay.

22. Draw a diagram to implement manual multiplication algorithm.

23. Perform the 2’s complement subtraction of smaller number(101011) from larger

number(111001).

PART-B (16 Marks)

1. Write briefly about computer fundamental system?

2. Explain memory unit functions.

3. Explain memory locations and addresses.

4. Explain Software interface.

5. Explain instruction set Architecture? Give examples.

6. What is bus explain it in detail?

7. 9. Discuss about different types of addressing modes.

8. 10. Explain in detail about different instruction types and instruction sequencing.

9. 11. Explain Fixed point representation.

10. 12. How floating point addition is implemented. Explain briefly with a neat diagram.

11. 13. Give the difference between RISC and CISC.

12. 14. Write an algorithm for the division of floating point number and illustrate with an

example.

131

UNIT II BASIC PROCESSING UNIT

PART-A (2 MARKS)

1. What are the basic operations performed by the processor?

2. Define Data path.

3. Define Processor clock.

4. Define Latency and throughput.

5. Discuss the principle operation of micro programmed control unit.

6. What are the differences between hardwired and micro programmed control units?

7. Define nanoprogramming.

8. What is control store?

9. What are the advantages of multiple bus organization over a single bus organization?

10. Write control sequencing for the executing the instruction. Add R4,R5,R6.

11. What is nano control memory?

12. What is the capacity of nano control memory?

13. Define micro routine.

14. What is meant by hardwired control?

15. What are the types of micro instruction?

16. Name the methods for generating the control signals.

PART-B(16 MARKS)

1.With a neat sketch, explain how execution of complete instruction is carried out.

1. Draw and explain typical hardware control unit.

2. Draw and explain about micro program control unit.

3. Write short notes on

(i)Micro instruction format (ii) Symbolic micro instruction.

4. Explain multiple bus organization in detail.

UNIT III PIPELINING

PART-A (2 MARKS)

1. What is Pipelining?

2. What are the major characteristics of a Pipeline?

3. What are the various stages in a Pipeline execution?

4. What are the types of pipeline hazards?

5. Define structural, data, and control hazard.

6. List two conditions when processor can stall.

7. List the types of data hazards.

8. List the techniques used for overcoming hazard.

9. What is instruction level parallelism?

10. What are the types of dependencies?

11. What is delayed branching?

12. Define deadlock.

13. Draw the hardware organization of two stage pipeline.

14. What is branch prediction?

15. Give two examples for instruction hazard.

16. List the various pipelined processors.

17. Why we need an instruction buffer in a pipelined CPU?

18. What are the problems faced in instruction pipeline?

132

19. Write down the expression for speedup factor in a pipelined architecture.

PART-B (16 MARKS)

1. Explain different types of hazards that occur in a pipeline.

2. Explain various approaches used to deal with conditional branching.

3. Explain the basic concepts of pipelining and compare it with sequence processing with a

neat diagram.

4. Explain instruction pipelining.

5. What is branch hazard? Describe the method for dealing with the branch hazard?

6. What is data hazard? Explain the methods for dealing with data hazard?

7. Explain the function of six segment pipeline and draw a space diagram for six segment

pipeline solving the time it takes to process eight tables.

8. Explain the influence of instruction sets.

9. Draw and explain data path modified for pipelined execution.

10. Explain about various exceptions.

UNIT IV MEMORY SYSTEM

PART- A (2 MARKS)

1. What is Memory system?

2. Give classification of memory.

3. Define cache.

4. What is Read Access Time?

5. Define Random Access Memory.

6. What are PROMS?

7. Define Memory refreshing.

8. What is SRAM and DRAM?

9. What is volatile memory?

10. Define data transfer or band width.

11. What is flash memory?

12. What is multi level memories?

13. What is address translation page fault routine, page fault and demand paging?

14. What is associate memory?

15. Define Seek time and latency time.

16. What is TLB?

17. Define Magneto Optical disk.

18. Define Virtual memory.

19. What are the enhancements used in the memory management?

20. Define the term LRU and LFU.

21. Define memory cycle time.

22. What is static memories?

23. What is locality of reference?

24. Define set associative cache.

25. What is meant by block replacement?

26. List the advantages of write through cache.

27. Give formula to calculate average memory access time.

28. Define conflict.

29. What is memory interleaving?

30. What is DVD?

31. Give the features of ROM cell.

32. List the difference between static RAM and dynamic RAM.

133

33. What is disk controller?

34. How a data is organized in the disk?

PART-B (16 MARKS)

1. Illustrate the characteristics of some common memory technologies.

2. Describe in detail about associative memory.

3. Discuss the concept of Memory interleaving and give its advantages.

4. Discuss the different mapping techniques used in cache memories and their relative merits

and demerits.

5. Comparing paging and segmentation mechanisms for implementing the virtual memory.

6. What do you mean by virtual memory? Discuss how paging helps in implementing virtual

memory.

7. Discuss any six ways of improving the cache performance.

8. Explain the virtual memory translation and TLB with necessary diagram.

9. Explain the organization of magnetic disk and magnetic tape in detail.

UNIT V I/O ORGANIZATION

PART-A (2 MARKS)

1. Define intra segment and inter segment communication.

2. Mention the group of lines in the system bus.

3. What is bus master and slave master?

4. Differentiate synchronous and asynchronous bus.

5. What is strobe signal?

6. What is bus arbitration?

7. Mention types of bus arbitration.

8. What is I/O control method?

9. What is DMA?

10. Why does the DMA priority over CPU when both request memory transfer?

11. List out the types of interrupts.

12. What is dumb terminal?

13. What is the need for DMA transfer?

14. List down the functions performed by an Input/Output unit.

PART-B(16 MARKS)

1. Explain with the block diagram the DMA transfer in a computer system.

2. Describe in detail about IOP Organization.

3. Describe the data transfer method using DMA.

4. Write short notes on the following

(a) Magnetic disk drive

(b) Optical drives.

5. Discuss the design of a typical input or output interface.

6. What are interrupts? How are they handled?

7. Give comparison between memory mapped I/O and I/O mapped I/O.

8. Explain the action carried out by the processor after occurrence of an interrupt.

9. What is DMA? Describe how DMA is used to transfer data from peripherals.

10. Explain various data transfer modes used in DMA.

11. Explain SCSI bus standards.

12. Describe the working principle of USB.

134

