Time: 3 Hours

B. Tech. Degree III Semester Examination November 2013

CS/IT 1303 DISCRETE COMPUTATIONAL STRUCTURES

(2012 Scheme)

Maximum Marks: 100

		PART A (Answer ALL questions)	
I.	(a)	Define tautology and contradiction with an example.	$(8 \times 5 = 40)$
	(b)	State De-Morgan's Law for logic.	
	(c)	Write an algorithm to find the maximum of a finite sequence of numbers.	
	(d)	State Pigeohole principle with an example.	
	(e)	Write a note on travelling salesman problem in graph theory.	
	(f)	Define minimal spanning tree.	
	(r) (g)	Consider an algebraic system $(G,*)$ where G is the set of all non-zero real numbers	
		and * is a binary operation defined by $a*b = \frac{ab}{2}$. Show that $(G,*)$ is an abelian	
		group.	
	(h)	Define semigroup and lattice.	
		PART B	
			$(4 \times 15 = 60)$
II.	(a)	Prove that $(p \rightarrow q) \leftrightarrow (\upsilon p) v q$ is a tautology.	(7)
	(b)	By mathematical induction, prove that	(8)
		$1^3 + 2^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$	
III.	(a)	OR Determine whether the given arguments are valid or not.	(7)
	(4)	(i) $p \rightarrow q$ (ii) $p \rightarrow q$	
		$\frac{p}{da}$ $\frac{q}{da}$	
			(0)
	(b)	Consider f, g and h, all functions on the integers by	(8)
		$f(n) = n^2$, $g(n) = n+1$ and $h(n) = n-1$. Determine: (i) hofog (ii) gofoh (iii) fogoh	
IV.	(a)	Solve the recurrence relation $2a_r - 5a_{r-1} + 2a_{r-2} = 0$ with initial condition	(10)
		$a_0 = 0 \text{ and } a_1 = 1$,
	(b)	From a club consisting of 4 men and 6 women, in how many ways we can select a committee of 3 men and 4 women.	(5)
V.	(a)	OR Define recursive algorithm and explain the recursive algorithm for finding the	(7)
	(b)	factorial of n. Solve recurrence relation $a_r - 4a_{r-1} + 4a_{r-2} = 0$ with initial condition	(8)
	(-)	$a_0 = 1$ and $a_1 = 6$	• •
			(P.T.O.)

VI. (a) Prove that the sum of degree of all the vertices in a graph G, is even.

(5)

(b) Use Fleury's algorithm to find an Euler cycle in the following graph.

(10)

OR

- VII. (a) Prove that in any graph, there are an even number of vertices of odd degree.
- (5)
- (b) Apply Kruskal's algorithm to find minimal spanning tree of the following graph

VIII. (a) Let $A\{a,b\}$, which of the following tables defines a semigroup on A? Which define monoid on A? (10)

* a b a b

(i)

* a b
a a b
b b a

(b) Let (A,*) be a semigroup. For every a, b in A,

(5)

if $a \neq b$ then $a * b \neq b * a$ and a * a = a

- (i) show that for every a, b in A, a*b*a = a
- (ii) show that for every a,b,c in A, a*b*c=a*c

(ii)

OR

IX.

Let $D_{100} = \{1, 2, 4, 5, 10, 20, 25, 50, 100\}$ and let the relation be 'the divides', be a partial ordering on D_{100} . Draw the Hasse Diagram. (15)

- (i) Determine the GLB and LUB of B, where $B = \{5, 10, 20, 25\}$
- (ii) Determine the GLB and LUB of B, where $B = \{10, 20\}$
