

Code No.: 5132/O

FACULTY OF ENGINEERING B.E. 2/4 (ECE) I Semester (Old) Examination, December 2011 BASIC CIRCUIT ANALYSIS

Tin	ne: 3 Hours] [Max. Marks	s: 75
	Note : Answer all questions from Part A. Answer any five questions from Part B.	
	PART – A (25 Ma	rks
4.	Define Thevenins's Theorem and write the equivalent circuit.	2
	Obtain a single current source with shunt impedance for the network shown:	3
	18VOT 984 \$411	
3.	Define Transient and Steady state responses.	2
4.	What are the various solutions depending upon the type of roots obtained for an RLC circuit?	3
5.	Define true and apparent powers with expressions.	2
6.	Define poles and zeros of a network function.	2
7.	Define band width and quality factor and relate them.	3
8.	Draw atleast two possible trees and their corresponding co-trees for the circuit shown:	3
	120 150 Jon 250 3 600 C 55V	
9.	Define Incidence matrix and Tie-set matrix.	2
10.	Define zero input response, zero state response and complete responses.	3
	PART – B (50 Mar	'ks)
1.	a) Using Nodal Analysis, find the current in each resistor of the following network:	8
	b) Define Norton's Theorem.	2
(This	paper contains 2 pages) 1 P.	T.O.

12. Obtain the current at t > 0, if a.c. voltage v is applied, when the switch 'K' is moved to 2 from 1 at t = 0. Assume a steady state current of 1A in the RL circuit when the switch was at position 1, for the following circuit.

10

13. Find v_c (t) for the following circuit for $t \ge 0$.

10

14. a) Define Resonance of a circuit. What are the properties of parallel resonance circuit?

? 5

b) Find V₂ (S)/V₁ (S) in the figure shown below :

5

15. a) In the network shown check the validity of Tellegen's Theorem, provided $V_1 = 8 V_1 V_2 = 4 V$ and $V_4 = 2V$. Also $I_1 = 4A$, $I_2 = 2A$ and $I_3 = 1A$.

5

b) Plot the variation of capacitive, inductive reactances, overall reactance, Impedance and current with frequency for a series RLC circuit.

5

16. a) Define principle of Duality. Explain procedure of obtaining a Dual network for any network.

5

- b) Obtain the Tie-set matrix for the following circuit. Also write down the KVL equations.
- 5

17. Write short notes on:

10

a) Superposition Theorem

b) Distinguish between various powers used in a.c. circuits.