

SET -1

III B. Tech II Semester Regular Examinations, July -2023 COMPILER DESIGN

(Computer Science and Engineering)

Tim	e: 3 h	ours Max. Mark	s: 70
		Answer any FIVE Questions ONE Question from Each unit	
		All Questions Carry Equal Marks	
		<u>UNIT-I</u>	
1.	a)	Discuss the phases of a compiler indicating the inputs and outputs of each phase in translating the statement " $a=p+r*36.0$ ".	[7M]
	b)	Discuss about the role of lexical analyzer. Explain with program. (OR)	[7M]
2.	a)	Explain various data structures used in lexical analysis.	[7M]
	b)	Write a Regular Expression for identifier, reserved words & relation operators. Design a transition diagram for each of them. UNIT-II	[7M]
3.	a)	Explain the role of parser. Explain types of grammars used for parsing.	[7M]
	b)	Write an algorithm for constructing a predictive parsing table. Give Example (OR)	[7M]
4.	a)	What is an ambiguous grammar? Write a procedure to eliminate the same with an example.	[7M]
	b)	Consider the following grammar $S \rightarrow (L)$ a $L \rightarrow L$, S S Construct leftmost and Right most derivations and parse trees for the following sentences: i. (a,(a,a)) ii. (a,((a,a),(a,a))).	[7M]
5	-)	<u>UNII-III</u> Emploin the structure of the LD Degrees and Differences between LD and LL	[7]] (]
э.	a)	Parsers.	[/][]
	b)	What is an LR(0) item? Construct an SLR parsing table for the grammar G: S \rightarrow L=R R, L \rightarrow *R id, R \rightarrow L. Is it SLR(1) grammar? (OR)	[7M]
6.	a)	What are different intermediate code forms? Discuss different Three Address code types and implementations of Three Address statements	[7M]
	b)	Write a note on simple type checker and list the different types of type checking	[7M]
		UNIT-IV	
7.	a)	Explain various storage allocation strategies with its merits and demerits.	[7M]
	b)	Define activation records. Explain how it is related with runtime storage allocation.	[7M]
0	`	(OR)	(7) ()
8.	a)	what is runtime stack? Explain the storage allocation strategies used for recursive procedure calls.	[/M]
	b)	What is a flow graph? Explain how flow graph can be constructed for a given program. Main()	[7M]

R20

{ int sum, n, i; sum=0; for i:=1 to n do sum:=sum+i; write(sum); }

UNIT-V

9.	a)	What is an induction variable, invariant variable, deadcode? Explain with an	[7M]
		example.	
	b)	Discuss Global Register Allocation in code generation.	[7M]
		(OR)	
10.	a)	Give an example to show how DAG is used for register allocation.	[7M]
	b)	Generate code for the following C statements:	[7M]
	ŕ	i) $x=f(a)+f(a)$ ii) $y=x/5$;	

SET -2

III B. Tech II Semester Regular Examinations, July -2023 COMPILER DESIGN

(Computer Science and Engineering)

Tim	ne: 3 h	ours Max. Mark	as: 70
		Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****	
		<u>UNIT-I</u>	
1.	a)	Explain the boot strapping process with suitable examples and diagrams.	[7M]
	b)	Construct an FA equivalent to the regular expression $(0+1)^*(00+11)(0+1)^*$ (OR)	[/M]
2.	a)	Write about tokens generated by lexical analyzers. Describe the lexical errors and various error recovery strategies with suitable examples.	[7M]
	b)	Define Regular Expression. Explain the properties of Regular Expressions. Discuss with suitable examples.	[7M]
		<u>UNIT-II</u>	
3.	a)	Compute FIRST and FOLLOW for the grammar:	[7M]
	1 \	$S \rightarrow S S + \setminus S S * \setminus a$.	
	b)	in predictive parsing.	[/M]
		(OR)	
4.	a)	Give an algorithm to eliminate productions containing useless symbols and	[7M]
	1-)	ambiguous productions from a grammar.	[7]] /]
	D)	Construct predictive parse table for the following grammar. $E \rightarrow E \pm T/T$	[/M]
		$T \rightarrow T * F/F$	
		$F \rightarrow F/a/b$	
		<u>UNIT-III</u>	
5.	a)	List and explain different types of $\overline{LR Parsers}$. Differentiate LR(0) and LR(1)	[7M]
		items and their associated parsers.	
	b)	Construct Canonical LR parsing table for the following grammar. $S \rightarrow L=R \mid R$ $L \rightarrow R \mid id$	[7M]
		$R \rightarrow L$	
		(OR)	
6.	a)	Compare and contrast SLR with LALR. Show the following grammar is	[7M]
		LALR(1)	
		$S \rightarrow Aa \mid bAc \mid dc \mid bda$	
	b)	$A \rightarrow u$ What do you mean by attributed grammars? Discuss the translation scheme for	[7M]
	0)	Converting an infix expression to its equivalent postfix form	[/1 v1]
		UNIT-IV	
7.	a)	What are the principles associated with designing calling sequences and the	[7M]
	-	layout of activation records?	-
	b)	What is the role of code Optimizer in compiler? Is it a mandatory phase?	[7M]
		Explain the various sources of optimization.	
		(OR)	

		Code No: R2032052 R20 SET	T-2
8.	a)	Explain how data flow equations are set up and solved for improving code.	[7M]
	b)	Discuss basic blocks and flow graphs with an example.	[7M]
		<u>UNIT-V</u>	
9.	a)	Generate code for the following C program using any code generation algorithm. main() { int I; int a[10]; while(i<=10) a[i]=0; }	[7M]
	b)	Explain the main issues in code generation. How to handle them? Discuss. (OR)	[7M]
10.	a) b)	Discuss about register allocation and assignment in target code generation. Discuss how induction variables can be detected and eliminated from the given intermediate code B2: i:= i+1 t1:=4*j t2:=a[t1] if t2<10 goto B2	[7M] [7M]

SET -3

III B. Tech II Semester Regular Examinations, July -2023 COMPILER DESIGN

(Computer Science and Engineering)

Tim	e: 3 h	ours Max. Mark	ks: 70
		Answer any FIVE Questions ONE Question from Each unit	
		All Questions Carry Equal Marks	
		<u>UNIT-I</u>	
1.	a)	Explain various building blocks used to design a language translator.	[7M]
	b)	Differentiate between	[7M]
		i) Phase and a pass ii) single-pass and multi-pass compiler. (OR)	
2.	a)	What is LEX? Discuss the usage of LEX in Lexical Analyzer generation.	[7M]
	b)	Construct a Finite Automata and Scanning algorithm for recognizing	[7M]
		identifiers, numerical constants in C language.	
		<u>UNIT-II</u>	
3.	a)	Define Context Free Grammar. Explain how it is suitable for parsing? Explain the recursive descent parser with example.	[7M]
	b)	Design a non-recursive predictive parser for the following grammar:	[7M]
		$S \rightarrow AaAb \mid BbBb$	
		$A \rightarrow e$	
		$B \rightarrow e$ where a, b, e are terminals.	
		(OR)	
4.	a)	Given the following grammar: $E \rightarrow E + E E - E E * E E / E - E int Show$	[7M]
		two different left-most derivations with the help of parse trees for the string	
	1 \	1nt + 1nt * 1nt / 1nt. What does this tell you?	
	b)	Explain left recursion and left factoring with examples.	[/M]
_		<u>UNIT-III</u>	
5.	a)	Define $LR(k)$ parser. Explain the model of LR parser and various functions	[7M]
	1 \	used in it for parser construction.	
	b)	How to handle ambiguity through LR parsers? Discuss about the Dangling –	[/M]
		(OR)	
6.	a)	Give syntax directed translation scheme for simple desk circulator.	[7M]
	h)	Show that the following grammar:	[7M]
	0)	$S \rightarrow AalbAclBclbBa$	[, 1, 1, 1]
		$A \rightarrow d$	
		$B \rightarrow d$	
		Is LR(1) but not LALR(1).	
		<u>UNIT-IV</u>	
7.	a)	Give the general structure of an activation record? Explain the purpose of	[7M]
		each component involved in it.	
	b)	Explain various machine independent code optimization techniques.	[7M]
		(OR)	

Code	No:	R2032052 R20 SET	-3
8.	a)	Write a short note on peephole optimization and various operations used in it.	[7M]
	b)	Describe Loop unrolling? Describe its advantage with your own examples. UNIT-V	[7M]
9.		Explain the code generation algorithm in detail with an example. (OR)	[14M]
10.	a)	Discuss basic blocks and flow graphs with an example	[7M]
	b)	Generate code for the following: i) $x=f(a)+f(a)+f(a)$ ii) $x=f(f(a))$ iii) $x=++f(a)$ iv) $x=f(a)/g(b,c)$	[7M]

III B. Tech II Semester Regular Examinations, July -2023 **COMPILER DESIGN**

(Computer Science and Engineering)

Time: 3 hours

Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks

LINIT_I

1.	a)	Write about Phases of a compiler. Explain each with an example.	[8M]
	b)	Explain about Input Buffering in lexical Analyzer with an example.	[6M]
	- /	(OR)	r. 1
2.	a)	Describe the need and functionality of linkers, assemblers and loaders.	[7M]
	b)	State the steps to convert a regular expression to NFA. Explain with an example.	[7M]
		<u>UNIT-II</u>	
3.	a)	What are the preprocessing steps required for constructing Predictive parsing table. Explain with example.	[7M]
	b)	Define a Parser. What is the role of grammars in Parser construction? Construct the Predictive parsing table for the grammar G: $E \rightarrow E+T T, E \rightarrow T^*F F, F \rightarrow$	[7M]
		(E) lid.	
		(OR)	(7) (1
4.	a)	What is an LL(1) grammar? Can you convert every context free grammar into $LL(1)$. How to check the grammar is $LL(1)$ or pot? Explain the rules	[/M]
	h)	Consider the following grammar	[7M]
	0)	$E \rightarrow T + E T$	[/171]
		$T \rightarrow V^*T V$	
		$V \rightarrow id$	
		Write down the procedures for the non-terminals of the grammar to make a recursive descent parser	
		UNIT-III	
5.	a)	Write the rules used to construct SLR Parser. Give example.	[7M]
	b)	Generate the three address code for the following code fragment. a = b + 1 $x = y + 3$ $y = a / b$ $a = b + c$	[7M]
		(OR)	
6.	a)	What is an LALR(1) grammar?. Construct LALR parsing table for the following grammar: $S \rightarrow CC$, $C \rightarrow cC$, $C \rightarrow cld$.	[7M]
	b)	Write and explain the LR Parsing algorithm	[7M]
		<u>UNIT-IV</u>	
7.	a)	Explain static and stack storage allocations?	[7M]
	b)	Translate the arithmetic expression a[i]=b*c-b*d into a syntax tree, quadruples and triples	[7M]
		(OR)	

(**R20**)

SET -4

8.	a)	Write pseudocode for finding sum of 'n' numbers. And identify basic blocks	[7M]
		then construct the flow graph for it. Explain the rules used for this.	
	b)	Explain the following peephole optimization techniques;	[7M]
		i) Elimination of Redundant Code	
		ii) Elimination of Unreachable Code	
		<u>UNIT-V</u>	
9.	a)	Explain the main issues in code generation.	[7M]
	b)	Explain the following terms:	[7M]
		i) Register Descriptor ii) Address Descriptor iii) Instruction Costs	
		(OR)	
10.	a)	Give an example to show how DAG is used for register allocation.	[7M]
	b)	Generate code for the following C program using any code generation	[7M]
	-	algorithm.	
		main()	
		{	
		int I;	
		int a[10];	
		while $(i \le 10)$	
		a[i]=0;	
		}	
		,	