\square

B.E. DEGREE END SEMESTER EXAMINATIONS, OCT/NOV 2013

COMMON TO MECHANICAL, MATERIAL SCIENCE AND MANUFACTURING ENGINEERING BRANCH SIXTH SEMESTER - (REGULATIONS 2008)

ME473/ME9351 FINITE ELEMENT ANALYSIS
Time: 3 Hours
Max. Marks: 100
Answer All Questions
PART-A
(10 $\times 2=20$ marks)
1 What are the advantages of weak formulation?
2 Differentiate between primary and secondary variables with suitable examples
3 Derive the shape functions for a 1D quadratic isoparametric element
4 What are the properties of the Stiffness matrix?
5 Derive the mass matrix for a two noded linear element.
6 What is meant by a CST element? Why is the element so called?
7 With suitable examples and the governing equations distinguish between vector and scalar variable problems.

Write the $[B]$ matrix for a CST element.
With suitable examples explain what serendipity elements are.
Derive the shape functions for linear isoparametric triangular element and plot the variation of the same.

PART-B
(5 x $16=80$ Marks)
11. Determine using any numerical technique, the temperature distribution along a circular fin of length 8 cm and radius 1 cm . The fin is attached to a boiler whose wall temperature is $120^{\circ} \mathrm{C}$ and the free end is insulated. Assume convection coefficient $\mathrm{h}=10 \mathrm{~W} / \mathrm{cm}^{2}{ }^{\circ} \mathrm{C}$, Conduction coefficient $\mathrm{K}=70 \mathrm{~W} / \mathrm{cm}^{\circ} \mathrm{C}$ and $\mathrm{T}_{\infty}=40^{\circ} \mathrm{C}$. Calculate the temperatures at every 1 cm from the left end
12.a Determine the nodal displacements, element stresses and support reactions for the stepped bar loaded as shown in Fig. 12.a $P_{1}=100 \mathrm{kN}$ and $P_{2}=75 \mathrm{kN}$. The details of each section of the bar are tabulated below:

Portion	Material	E (GPa)	Area $\left(\mathrm{mm}^{2}\right)$
A	Steel	200	1200
B	Aluminium	70	800

Fig 12.a

OR

12.b Determine the deflection and slope in the beam, loaded as shown in Fig. 12 b , at the mid-span and at the tip. Determine also the reactions at the fixed end.
$\mathrm{E}_{1}=200 \mathrm{GPa} . \mathrm{E}_{2}=85 \mathrm{GPa}, \mathrm{I}=20 \times 10^{-6} \mathrm{~m}^{4}$.

Fig $12 . b$
13.a Determine the stresses in a square shaft of cross section $1 \mathrm{~cm} \times 1 \mathrm{~cm}$ as shown in Fig.13.a subjected to torsion. Considering geometry and boundary condition symmetry $1 / 8^{\text {th }}$ of the cross section was modeled using two triangular elements and one bilinear rectangular element as shown. The element matrices are given below. Carry out the assembly and solve for the unknown stress function values.

For Triangle:
$\begin{aligned} & \text { For Thingle: } \\ & \mathrm{K}=12\end{aligned}\left[\begin{array}{rrr}1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1\end{array}\right] \quad \mathbf{r}=\left[\begin{array}{c}29.1 \\ 29.1 \\ 29.1\end{array}\right]$
For Rectangle
$\mathrm{K}=16\left[\begin{array}{rrrr}4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4\end{array}\right] \quad \mathbf{r}=\left[\begin{array}{c}43.6 \\ 43.6 \\ 43.6 \\ 43.6\end{array}\right]$

Fig 13.a
$13 \dot{r}$ i) Determine three points on the $50^{\circ} \mathrm{C}$ contour line for the rectangular element shown the Fig.13.b. The nodal values are $\mathrm{T}_{1}=42^{\circ} \mathrm{C}, \mathrm{T}_{2}=54^{\circ} \mathrm{C}, \mathrm{T}_{3}=56^{\circ} \mathrm{C}$, and $\mathrm{T}_{4}=46^{\circ} \mathrm{C}$ (8 marks)

Fig.13.b
ii) Derive the shape functions for one Corner node, one mid-side node and the internal node of a quadratic quadrilateral Lagrangian element (8 marks)
14.a i) A plate of dimensions $15 \mathrm{~cm} \times 6 \mathrm{~cm} \times 1 \mathrm{~cm}$ is subjected to an axial pull of 15 kN . Assuming a typical element is of dimensions as shown in the fig.14.a. Determine the strain displacement matrix and constitutive matrix. $\mathrm{E}=200 \mathrm{GPa}, \mu=0.3$. (8 marks)

Fig.14.a
ii) Derive the Strain Displacement matrix for a bi linear rectangular element. (8 marks)

OR

14.b i) Derive the constitutive matrix for Plane Stress and Plane strain elements. Give at least two practical examples for Plane Stress and Plane strain analysis. (10 marks) ii) Using energy approach, derive the stiffness matrix for a ID linear isoparametric element.
(6 marks)
15.a i) Using Gauss Quadrature evaluate the following integral using 12 and 3 point Integration. Compare with exact solution.

$$
I=\int_{-1}^{+1}\left(6 \xi^{3}-2 \xi^{2}+3 \xi+5\right) d \xi
$$

(8 marks)
ii) Evaluate the shape functions for a corner node and mid side node of a quadratic triangular serendipity element and plot its variation.
(8 marks)

OR
$15 . b$ i) What are natural coordinates? What are the advantages of the same?
ii) Explain with suitable examples why we resort to isoparametric transformation. Differentiate between isoparametric, sub parametric and super parametric elements.
iii) For the four noded element shown in Fig15.b determine the Jacobian and evaluate its value at the point $(1 / 2,1 / 3)$.
(8marks)

Fig 15.b

$$
\begin{array}{ll}
\text { StiffnessMatrix }[K]^{e}=\frac{E I}{l^{3}}\left[\begin{array}{cccc}
12 & 6 l & -12 & 6 l \\
6 l & 4 l^{2} & -6 l & 2 l^{2} \\
-12 & -6 l & 12 & -6 l \\
6 l & 2 l^{2} & -6 l & 4 l^{2}
\end{array}\right] . & \{f\}^{e}=\frac{q l}{2}\left[\begin{array}{c}
1 \\
l / 6 \\
1 \\
-l / 6
\end{array}\right\}
\end{array} \begin{aligned}
& N_{1}=1-\left(\frac{3 x^{2}}{l^{2}}\right)+\left(\frac{2 x^{3}}{l^{3}}\right) \\
& N_{2}=x-\left(\frac{2 x^{2}}{l}\right)+\left(\frac{x^{3}}{l^{2}}\right) \\
& \\
& {[M]=\frac{\rho A \ell}{420}\left[\begin{array}{cccc}
156 & 22 \ell & 54 & -13 \ell \\
22 \ell & 4 \ell^{2} & 13 \ell & -3 \ell^{2} \\
54 & 13 \ell & 156 & -22 \ell \\
-13 \ell & -3 l^{2} & -22 \ell & 4 l^{2}
\end{array}\right]}
\end{aligned}
$$

No.of points	Location	Weight 2
1	$\xi_{1}=0.00000$	2,00000
2	$\xi_{1}, \xi_{2} \pm 0.57735$	1.00000
3	$\xi_{1}, \xi_{3}= \pm 0.77459$	0.55555
	$\xi_{2}=0.00000$	0.88888

$$
\begin{aligned}
& \left.F(\xi, \eta)=\Sigma f \xi_{i} \eta_{i}\right) w_{i} w_{j} \\
& \xi, \eta=0.57735
\end{aligned}
$$

