B.E. / B. TECH (PART TIME) REGULAR EXAMINATIONS APRIL / MAY 2014
 ANNA UNIVERSITY CHENNAI
 PTEC8101 CIRCUIT THEORY
 DEPT. OF ECE
 SEMESTER I, REGULATIONS 2013

Time: 3hours

ANSWER ALL QUESTIONS

PART-A
Max Marks: 100

1. For the current $\mathrm{i}=3 \mathrm{te} \mathrm{e}^{-100 \mathrm{t}} \mathrm{mA}$ and $\mathrm{v}=(0.006-0.6 \mathrm{t}) \mathrm{e}^{-100 \mathrm{t}} \mathrm{V}$, determine the power
absorbed by the circuit element at $\mathrm{t}=5 \mathrm{~ms}$ and energy delivered to the element in th interval $0<\mathrm{t}<\infty$.
2. A 100 W light bulb, a 60 W light bulb and a 40 W light bulb are connected in parallel to each other and to a 230 V suppiy. Compute the current flowing through each light bulb and the total current delivered by the voltage supply..
3. Three 30Ω resistors are connected in a delta connection, determine the wye equivalent circuit.
4. Define duality with an example.
5. A voltage of $8 \mathrm{~L}-50^{\circ}$ is applied to a 4 H inductor. Determine the phasor current and time domain current.
6. Find the average power and an expression for the instantaneous power that result when the corresponding phasor voltage $\mathrm{V}=4 \mathrm{~L} 0^{\circ} \mathrm{V}$ is applied across an impedance $\mathrm{Z}=2$ $\left\llcorner 60^{\circ} \Omega\right.$.
7. Determine the quality factor for resonant circuit containing components $20 \Omega, 50 \mathrm{mH}$ and $10 \mu \mathrm{~F}$ connected in parallel.
8. Write the expression for half power frequencies of a series resonant circuit.
9. Define the coefficient of coupling for the coupled circuit.
10. Define cotree with an example.

PART-B

(5x16 = 80 marks)
11 i). Determine the power generated by each of the sources in the circuit shown using mesh

ii). Find v_{1} and i_{2} using nodal analysis in the circuit shown.

12a i). Find the voltage across the current source using superposition theorem. a ii). Determine the Thevenin equivalent of the circuit shown at terminals $a b$.

OR
12.b.(i) Determine the maximum power that could be dissipated in R_{L} in the circuit shown.

b.ii). Determine the power delivered to a 50Ω resistor connected to terminals a and b of the circuit shown.
13.a. Determine the nodal voltages in the circuit shown and verify the answer using mesh

b.i). Determine the input admittance for $\omega=60 \mathrm{rad} / \mathrm{seconds}$ in the circuit shown.
ii). Determine the average power, reactive and complex power when a 60 V rms is applied to a load of $1+\mathrm{j} 5 \Omega$. Akso, draw the power triangle.
14.a.(i) The switch is closed on position 1 at $t=0$ and after one time constant, it is moved to position 2 in the circuit shown. Determine the complete expression for the current.
(ii) Derive and plot the voltage across resistor and capacitor of a series RL circuit. $15 \sqrt{2}$

b. (i) Determine the value of L for which the circuit shown is resonant at 200 Hz ..
(ii) A series RLC circuit with $\mathrm{R}=3000$ ohms, $\mathrm{L}=10 \mathrm{H}$ and $\mathrm{C}=200 \mu \mathrm{~F}$ has a constant voltage $\mathrm{V}=50$ volts applied at $\mathrm{t}=0$. Find the current transient.

15a. Determine the voltage across the 5Ω for the coupled circuit shown.

OR

b. Explain how incidence matrix is derived from a graph with suitable example and express the branch current in terms of loop current using tie-set matrix.

