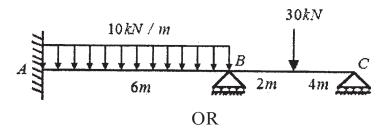
Total No. of Questions: 12]	SEAT No.:
P1153	[Total No. of Pages : 3

[4659] - 24

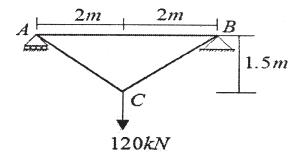
B.E. Civil Engineering (Semester - II)

A: FINITE ELEMENT METHOD IN CIVIL ENGINEERING (Elective - IV)

(2008 Pattern) (Open Elective)


Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:


- 1) Answer to the two sections should be written in separate books.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Use of non programmable calculator is allowed.
- 5) Assume suitable data, if necessary.

SECTION - I

Q1) Analyse the beam using stiffness matrix method (member approach) if support B is sink by 25mm. Take $El = 3800 \text{ kN.m}^2$. [18]

Q2) Analyze the truss and find member forces. Cross-sectional area of members are AB=1000 mm², BC=800 mm², CA = 800 mm². Take $E = 2 \times 10^5$ MPa [18]

Q3) Develop stiffness matrix for two noded frame element with three degrees of freedom at each node. Take EI constant. [16]

Q4)		elop stiffness matrix for two noded grid Element with three degrees dom at each node. Take EI and GJ constant. [10]	
Q5)	a)	Derive the differential equations of equilibrium for 3D elasticity problem.	8]
	b)	Derive Saint Venant's strain compatibility conditions. [8]	8]
		OR	
Q6)	a)	Write stress strain relationship for plane stress, plane strain ar axisymmetric problems.	nd 8]
	b)	Derive strain-displacement relations for 3D elasticity problem in Cartesia coordinate system.	an 8]
		SECTION - II	
Q7)	a)	Write short note on 2D and 3D Pascale's triangle.	9]
	b)	State and explain principle of virtual work and minimum potential energ	;y. 9]
		OR	
Q8)	a)	Explain step by step procedure for finite element method.	9]
	b)	What is effective node numbering scheme. Explain with example. [9]	9]
Q9)	a)	State the convergence criteria for the choice of the displacement function in FEM.	on 8]
	b)	Explain in brief discretization with suitable example.	8]
		OR	
Q10) a)	Explain local, global and natural coordinate systems.	6]
	b)	Derive stiffness matrix of two noded bar element using principle minimum potential energy.	

Q11)Derive shape functions of following isoparametric elements in natural coordinate system (ζ, η) .

- a) Two noded bar element
- b) Four noded rectangular element
- c) Eight noded rectangular element
- d) Nine noded rectangular element

OR

Q12) Derive necessary matrices [A], [B] and [D] for formulation of stiffness matrix of three noded axisymmetric triangular element. [16]

 \bullet