B. Tech I Year Examinations, May/June -2012
 ENGINEERING MECHANICS

(Common to CE, ME, CHEM, MCT, MMT, MEP, AE, AME, MIE, MIM, PTME)
Time: 3 hours
Max. Marks: 75
Answer any five questions
All questions carry equal marks

1. a) State and prove Varignons theorem.
b) A roller of radius $\mathrm{r}=0.3 \mathrm{~m}$. and weight $\mathrm{Q}=2000 \mathrm{~N}$ is to be pulled over a curb of height $\mathrm{h}=0.15 \mathrm{~m}$. by a horizontal force P applied to the end of a string wound around the circumference of the roller (Ref. Figure 1). Find the magnitude of P required to start the roller over the curb.

Figure: 1
2. Find the moment of the inertia of the section shown in the figure 2 about horizontal and vertical controidal axes. All dimension in $\mathrm{cm} \mathrm{R}=8$.

Figure: 2
3. Locate the centroid of the wire bent as shown in figure 3.

Figure: 3
4. Calculate the magnitude of the clockwise couple M required to turn the 50 kg cylinder in the supporting block shown in figure 4. The coefficient of kinetic friction is 0.30 . [15]

Figure: 4
5. Find the forces in all the members of the truss shown in the figure 5 (All forces are in kN).

6. When the angular velocity of a 1.2 m dia pulley is $3 \mathrm{rad} / \mathrm{s}$, the total acceleration of a point on its rim is $9 \mathrm{~m} / \mathrm{s}^{2}$. Determine angular acceleration of the pulley at this instance? [15]
7. The step pulley shown in figure 6 starts from rest and accelerates at $2 \mathrm{rad} / \mathrm{s}^{2}$. What time is required for block A to move 20 m . Find also the velocity of A and B at that time. [15]

Figure: 6
8. a) Explain the following:
i) Virtual displacement
ii) Virtual work
iii) Ideal system.
b) Determine the magnitude of the couple M required to maintain the equilibrium of the mechanism, if $\mathrm{P}=2000 \mathrm{~N}$ as shown in figure 7.

Figure: 7

