

CS/ B.Sc(H)/ BT/ SEM-2/ BMT-204/ 2013 2013 BIO-MATHEMATICS - II

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) In Rolle's theorem $f^{\prime}(x)$ should exist in
a) open interval
b) closed interval
c) semi-open interval
d) none of these.
ii) The eigenvalues of the matrix $\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$ are
a) 6,1
b) $-6,1$
c) $-6,-1$
d) $6,-1$.
iii) The order of the differential equation $\left\{1+\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right\}^{\frac{1}{2}}=x^{2}$ is
a) 1
b) 2
c) 3
d) $\frac{1}{2}$.
iv) The complementary function of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=0 \text { is }
$$

a) $\mathrm{A} e^{3 x}+B e^{-3 x}$
b) $(A+B x) e^{-3 x}$
c) $(A+B x) e^{3 x}$
d) none of these.
a) $\frac{1}{4} \sqrt{\pi}$
b) $\frac{3}{4} \sqrt{\pi}$
c) $\frac{1}{2} \sqrt{\pi}$
d) $\sqrt{\pi}$.
vi) The limit of the sequence $\left\{\frac{2 n}{n+3 \sqrt{n}}, n \in N\right\}$ is
a) $\frac{2}{3}$
b) 3
c) 2
d) $\frac{3}{2}$.
vii) Let $f: R \rightarrow R$ be defined by $f(x)=\frac{1}{3} x, x \in R$ and $g: R \rightarrow R$ be defined by $g(x)=9 x^{2}$, then $(g o f)(x)$ is
a) $\frac{1}{3} x^{2}$
b) $9 x^{2}$
c) x^{2}
d) $\frac{1}{9} x^{2}$.
a) $\pm \frac{1}{11}$
b) $\pm \frac{1}{5}$
c) $\pm \frac{1}{7}$
d) $\pm \frac{1}{3}$.
ix) The values of λ and μ, for which the vectors $-3 i+4 j+\lambda k$ and $\mu i+8 j+6 k$ are collinear are
a) $\lambda=3, \mu=6$
b) $\lambda=-3, \mu=-6$
c) $\lambda=-3, \mu=6$
d) $\lambda=3, \mu=-6$.
x) The straight line $\frac{x-5}{2}=\frac{y+2}{-2}=\frac{z-3}{2}$ meets the $x y$ plane at
a) $(1,2,0)$
b) $(-1,2,0)$
c) $(1,-2,0)$
d) $(2,1,0)$.

a) $-11,19,1$
b) $11,19,1$
c) - 11, - 19, - 1
d) $11,-19,1$.
xii) The series $\sum \frac{1}{\sqrt{n^{3}}}$ is
a) convergent
b) divergent
c) oscillatory
d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Find the the equation of the straigght line passing through the point ($1,-2,3$) and perpendicular to the plane $2 x+y+3 z=4$.
3. Define a group. Show that the set $G=\left\{1, \omega, \omega^{2}\right\}$ form a group with respect to multiplication, where ω is the cube root of unity.

CS/B.Sc(H)/BT/SEM-2/BMT-204/2013

5. Find the equations of the straight line passing through the point ($-1,1,-3$) and perpendicular to the straight line $\frac{x-3}{-2}=\frac{y+1}{3}=\frac{z-2}{-4}$.
6. Position vectors of P and Q referred to the origin o are $(-i+2 j+k)$ and $(-3 i+5 j+2 k)$. Find the scalar area of the triangle $O P Q$.
7. Show that the mapping $f: N \rightarrow N$, defined by $f(x)=x+1$, where N is the set of all natural numbers, is injective but not surjective.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
8. a) Let $G=\{(a, b) \in Q \times B ; a \neq o\}$, where B is the set of all rational numbers. Prove that (G, o) is a non-commutative group, where ' o ' is defined by $(a, b) o(c, d)=(a c, a d+b)$, for $(a, b),(c, d)$ in G.
b) Prove that a group (G, o) is Abelian if and only if $(a \circ b)^{-1}=a^{-1} \circ b^{-1}$ for all $a, b \in G$.
c) Let $f: R \rightarrow R$ be defined by $f(x)=3 x, x \in R$ and $g: R \rightarrow R$ be defined by $g(x)=\frac{x}{3}, x \in R$. Find g of and $f \circ g$ and hence show that $f o g=g o f$.
9. a) In the mean value theorem
$f(b)-f(a)=(b-a) f^{\prime}(c), a<c<b,-$ find c if $f(x)=x(x-1)(x-2), a=0, b=\frac{1}{2}$.
b) Prove that every convergent sequence $\left\{x_{n}\right\}$ is bounded.

Give an example to show that the converse is not.
c) If $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are three vectors such that $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=\vec{O}$ and $|\vec{\alpha}|=3,|\vec{\beta}|=5$ and $|\vec{\gamma}|=7$, find the angle between $\vec{\alpha}$ and $\vec{\beta}$.
10. a) Find the values of b and c for which the straight line $\frac{x-1}{2}=\frac{y-2}{7}=\frac{z+3}{3}$ lies on the plane $9 x+b y+c z=30$.
b) Show that the straight lines $x=n z+a, y=m z+b$ and $x=z+1, y=z+2$ will be coplanar, if $(a-1)(m-1)=(b-2)(n-1)$.
c) If $\overrightarrow{e_{1}}$ and $\overrightarrow{e_{2}}$ be two unit vectors and θ be the angle between them, then show that $2 \sin \frac{\theta}{2}=\mid e_{1}-e_{2}$ ।.
11. a) Test the convergence of the series
$\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3 \cdot 4.5}+\ldots \ldots$.
b) Test the convergence of the seires $\sum\left(\frac{n}{n+1}\right)^{n^{2}}$.
c) Using the definition of the limit of a sequence, show that the limit of the sequence $\left\{S_{n}\right\}$, where $S_{n}=\frac{2 n}{n+3}$ is 2 .
12. a) Define Gamma function and use it to evaluate

$$
\int_{0}^{\infty} x^{9} e^{-x^{2}} \mathrm{~d} x
$$

b) Solve any two of the following :
i) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=e^{2 x}$
ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=10 \sin x$
iii) $\quad x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=2 \log x$
iv) $l \frac{\mathrm{~d}^{2} \Theta}{\mathrm{~d} t^{2}}+g \theta=0, \quad \theta=\alpha$ and $\frac{\mathrm{d} \theta}{\mathrm{d} t}=0$ when $t=0$.

