	UNIVERSITY OF TECHNOLOUY
	Utech
Name :	
Roll No. :	A Description of Consider and Conference
Invigilator's Signature :	

CS/B.Sc(H)/BT/SEM-2/BMT-204/2013 2013 BIO-MATHEMATICS - II

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – **A**

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

i) In Rolle's theorem f'(x) should exist in

- a) open interval
- b) closed interval
- c) semi-open interval
- d) none of these.

2705

[Turn over

- ii) The eigenvalues of the matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$
 - a) 6, 1
 - b) 6, 1
 - c) 6, 1
 - d) 6, 1.

iii) The order of the differential equation $\left\{1 + \frac{d^2 y}{dx^2}\right\}^{\frac{1}{2}} = x^2$ is a) 1

- b) 2
- c) 3
- d) $\frac{1}{2}$.
- iv) The complementary function of the differential equation

$$\frac{d^2 y}{dx^2} + 6 \frac{dy}{dx} + 9y = 0$$
 is

- a) Ae 3x + Be ${}^{-3x}$
- b) $(A + Bx) e^{-3x}$
- c) $(A + Bx) e^{3x}$
- d) none of these.

c) x^{2} d) $\frac{1}{9}x^{2}$.

CS/B.Sc(H)/BT/SEM-2/BMT-204/2013

 $\lambda (6i+2j-3k)$

viii) The value of λ for which the vector λ (6 may be of unit length is

a)
$$\pm \frac{1}{11}$$

b) $\pm \frac{1}{5}$
c) $\pm \frac{1}{7}$
d) $\pm \frac{1}{3}$.

- ix) The values of λ and μ , for which the vectors $-3i + 4j + \lambda k$ and $\mu i + 8j + 6k$ are collinear are
 - a) $\lambda = 3, \mu = 6$
 - b) $\lambda = -3, \mu = -6$
 - c) $\lambda = -3, \mu = 6$
 - d) $\lambda = 3, \mu = -6$.
- x) The straight line $\frac{x-5}{2} = \frac{y+2}{-2} = \frac{z-3}{2}$ meets the

xy plane at

- a) (1,2,0)
- b) (-1, 2, 0)
- c) (1, -2, 0)
- d) (2, 1, 0).

- c) oscillatory
- d) none of these.

GROUP – **B**

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Find the the equation of the straigght line passing through the point (1, 2, 3) and perpendicular to the plane 2x + y + 3z = 4.
- 3. Define a group. Show that the set $G = \{1, \omega, \omega^2\}$ form a group with respect to multiplication, where ω is the cube root of unity.

[Turn over

- 5. Find the equations of the straight line passing through the point (-1, 1, -3) and perpendicular to the straight line $\frac{x-3}{-2} = \frac{y+1}{3} = \frac{z-2}{-4}$.
- 6. Position vectors of *P* and *Q* referred to the origin *o* are (-i+2j+k) and (-3i+5j+2k). Find the scalar area of the triangle *OPQ*.
- Show that the mapping f : N → N, defined by f (x) = x + 1, where N is the set of all natural numbers, is injective but not surjective.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Let $G = \{ (a, b) \in Q \times Q; a \neq o \}$, where Q is the set of all rational numbers. Prove that (G, o) is a non-commutative group, where 'o' is defined by (a, b) o (c, d) = (ac, ad + b), for (a, b), (c, d) in G.
 - b) Prove that a group (G, o) is Abelian if and only if $(a \circ b)^{-1} = a^{-1} \circ b^{-1}$ for all $a, b \in G$.
 - c) Let $f : R \to R$ be defined by f(x) = 3x, $x \in R$ and $g : R \to R$ be defined by $g(x) = \frac{x}{3}$, $x \in R$. Find $g \circ f$ and $f \circ g$ and hence show that $f \circ g = g \circ f$.

- b) Prove that every convergent sequence { x_n) is bounded. Give an example to show that the converse is not.
- c) If $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ are three vectors such that $\vec{\alpha} + \vec{\beta} + \vec{\gamma} = \vec{O}$ and $|\vec{\alpha}| = 3$, $|\vec{\beta}| = 5$ and $|\vec{\gamma}| = 7$, find the angle between $\vec{\alpha}$ and $\vec{\beta}$.
- 10. a) Find the values of *b* and *c* for which the straight line $\frac{x-1}{2} = \frac{y-2}{7} = \frac{z+3}{3}$ lies on the plane 9x + by + cz = 30.
 - b) Show that the straight lines x = nz + a, y = mz + b and x = z + 1, y = z + 2 will be coplanar, if

(a-1)(m-1) = (b-2)(n-1).

- c) If $\vec{e_1}$ and $\vec{e_2}$ be two unit vectors and θ be the angle between them, then show that $2 \sin \frac{\theta}{2} = |e_1 e_2|$.
- 11. a) Test the convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$ b) Test the convergence of the seires $\sum \left(\frac{n}{n+1}\right)^{n^2}$.

c) Using the definition of the limit of a sequence, show that the limit of the sequence { S_n }, where $S_n = \frac{2n}{n+3}$ is 2.

2705

[Turn over

CS/B.Sc(H)/BT/SEM-2/BMT-204/2013

12. a) Define Gamma function and use it to evaluate

$$\int_0^\infty x^9 e^{-x^2} dx$$

- b) Solve any *two* of the following :
 - i) $\frac{d^2y}{dx^2} 4 \frac{dy}{dx} + 4y = e^{2x}$
 - ii) $\frac{d^2 y}{dx^2} 2 \frac{dy}{dx} + 5y = 10 \sin x$
 - iii) $x^2 \frac{d^2 y}{dx^2} x \frac{dy}{dx} + y = 2 \log x$
 - iv) $l\frac{\mathrm{d}^{2}\theta}{\mathrm{d}t^{2}} + g\theta = 0$, $\theta = \alpha$ and $\frac{\mathrm{d}\theta}{\mathrm{d}t} = 0$ when t = 0.
