Man	10.								2005000	\supset	
							d		0	<u>_</u>	
							5.0		Enrulidge 2nd S		
Invigilator's Signature :											
CS/B.Sc.(H)(Genetics/BT/Mol.Bio/Microbio)/SEM-6/MHG-601/2011											
2011											
MODEL ORGANISMS IN HUMAN GENOME PROJECT											
Time Allotted: 3 Hours							Full Marks: 70				
		Th	e figures	in the mo	argin ind	lica	ite full mo	ırks.			
Can	Candidates are required to give their answers in their own words as										
far as practicable.											
	GROUP – A										
			(Multip	ole Choic	се Туре	Qι	uestions)			
	1. Choose the correct alternatives for any <i>ten</i> of the following :										
1.	Cho	ose t	he correc	t alterna	itives to	r ai	ny ten of	the 1	tollow	ing :	
								1	0 × 1	= 10	
	i)	i) Research in molecular and developmental biology of									
		<i>C. e</i>	legans w	-	•						
		a)	Sydney	Brenner	1	o)	Andrew	Fire	;		
		c)	Craig M				Craig V		r.		
	ii) 'Dauer' state in <i>C. elegans</i> is alternative to										
		a)	1st larva	al stage	1	o)	2nd larv	val s	tage		
		c)	3rd larv	al stage	(d)	4th larv	al st	age.		
	iii)	iii) Number of protein coding genes in C. elegans is									
	approximately										
		a)	10000		1	o)	20000				
		c)	25000		(d)	30000.				

[Turn over

6701

CS/B.Sc.((H)(Genetics/BT/Mol.Bio/Microbio)/SEM	-6/MHG-6019
iv)	The number of metacentric chrome	osomes in ze
	is	Clarific Control

- 8 a)
 - 2 b)
- c) 15 d) 20.
-, such as restriction maps, are based on v) molecular distances separating sites on a DNA molecule.
 - Vector maps Physical maps a) b)
 - Structural genomics Comparative genomics c) d)
 - None of these. e)
- GC rich repetitive sequence in zebra fish is mainly vi)
 - a) Centromeric b) Telomeric
 - c) Paracentromeric d) None of these.
- Distance betwen two STS markers should be vii)
 - 10×2 bases a) b) 10×3 bases
 - 10×4 bases d) 10×5 bases. c)
- viii) Determination of repetitive DNA size by whole genome shotgun technique requires DNA fragment size of
 - 2 kb a)
- 3 kb b)

5 kb c)

- 10 kb. d)
- A good model organism exhibits all the characteristics ix) below except
 - ease of cultivation a)
- long gestation period b)
- c) small size
- d) a sequenced genome.

- x) Which of the following statements about the yeast genome is not true?
 - a) Haploid chromosome number is 16
 - b) Relative distances of genes on the genetic and physical maps may differ
 - c) Relative order of genes on the genetic and physical maps may differ
 - d) The genetic map was determined by counting meiotic crossovers.
- xi) Who first described *C. elegans* as model organism?a) Sydney Brennerb) Harsley and Chasec) Tatumd) None of them.
- xii) allow researchers to study the transcription of thousands of genes simultaneously.
 - a) Gel electrophoresis b) Northern blots
 - c) Dot blots d) Microarrays
 - e) None of these.
- xiii) The number of cells present in hermaphrodite is
 - a) 959
- b) 1000

c) 1031

- d) None of these.
- xiv) The number of cells present in male is
 - a) 959

b) 1000

c) 1031

- d) None of these.
- xv) Protein array includes interactions of
 - a) protein legand
- b) protein-drug
- c) protein-antibody
- d) all of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. What are the features of microsatellites? What are their importances in genome mapping? 4 + 1
- 3. Write a short note on gene antology.
- 4. What are model organisms? Discuss the essential features of model organisms. 2 + 3
- 5. Give a brief account of E. coli genome.
- 6. What is AFLP? What are their uses?
- 7. What is expressed sequence tag (EST)?

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. Discuss how STS markers were used in Human Genome Project for physical mapping of genome. Discuss the principle of whole genome shotgun technique. 10 + 5
- 9. Discuss in brief the embryonic development of zebra fish. Discuss the essential features of zebra fish genome with a special note on its homology with the human genome. 8 + 7
- 10. Discuss why mouse is regarded as a model organism. What are the essential features of its genome. 5 + 10
- 11. What is Human Genome Project (HGP) ? What are its goals ? Discuss how HGP was initiated, progressed and ended. Discuss the essential features of the genome of the worm used in HGP as a model organism. 1 + 2 + 7 + 5
- 12. Write short notes on any *three* of the following : 3×5
 - a) Gene annotation
 - b) VNTRs
 - c) RFLP
 - d) DNA microarray.

6701 4