

FACULTY OF ENGINEERING

B.E. 3/4 (ECE) First Semester (Suppl.) Examination, June/July 2011 AUTOMATIC CONTROL SYSTEMS

Time: Three Hours]

[Maximum Marks: 75

Note: Answer ALL questions of Part A. Answer FIVE questions from Part B.

PART—A (Marks: 25)

- 1. Why negative Feedback is preferred in control systems?
- 2. What are the characteristics of servo motors?
- 3. What is a synchro? Write the applications of synchros.
- 4. Derive an expression for the transfer function of a single loop control system.
- 5. What are static error constants? What is their significance?
- 6. What do you mean by a PID controller?
- 7. What are the advantages of the Root locus?
- 8. Sketch the Bode Plot of $\frac{6}{s(s+6)}$.
- 9. State the Nyquist Stability Criterion.
- 10. What is the necessary and sufficient condition for output controllability of the systems?

PART—B (Marks: 50)

- 11. Define transfer function of Linear time invariant system. Derive the transfer function of armature controlled DC Motor.
- 12. A unity Feedback system is characterized by an open loop transfer function $G(s) = \frac{K}{s(s+10)}$.

Determine the gain K so that the system will have a damping ratio of 0.5. For this value of K determine the settling time, peak overshoot and time to peak overshoot for unit-step input.

HVS---804

(Contd.)

- 13. Sketch the root locus of the system whose transfer function is $\frac{K}{s(s+5)(s+10)}$, comment on stability.
- 14. A system has $G(s) H(s) = \frac{K(s+2)}{s(s+4)(s+10)}$, find value of K to get phase margin equal to +30°.
- 15. What are the advantages and disadvantages of Digital Control System? Explain architecture of digital control with suitable example.
- 16. (a) Write the properties of state transition matrix.
 - (b) The state equation of a linear time invariant system is given by:

$$\begin{bmatrix} \dot{\mathbf{x}}_1(t) \\ \dot{\mathbf{x}}_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1(t) \\ \mathbf{x}_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}(t).$$

Find the state transition matrix.

- 17. Write short notes on the following:
 - (a) Compensation network
 - (b) Controllability
 - (c) Phase margin and Gain margin.