67041

MCA 1st Semester w.e.f. Dec. 2012 with new notes full and reappear candidates Examination— December, 2013

Mathematical Foundation of Computer Science

Paper MCA-101

Time: 3 hours

Max. Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard will be entertained after the examination.

No. 1 is compulsory and attempt four more questions by selecting one from each Unit. All questions carry equal marks.

- 1. (a) Find the domain and range of the function: $f(x) = \frac{1}{\sqrt{x-4}}$
 - (b) Define semi-group and coset.
 - (c) If p: It is cold and q: It is raining. Write simple verbal sentence which describes the following statements:
 - (i) p ^ ~q
 - (世) ~p ∨ ~q
 - (d) Let A = {1, 2, 3, 4, 5, 6}. Determine the truth value of the following statements:
 - (i) $(\forall x \in A) x + 4 < 8$
 - (ii) $(\exists x \in A) x + 4 = 9$
 - (e) Draw the Hasse diagram for the relation divisibility on the set A = {1, 2, 4, 5, 10, 20}.

that (a . b. c)/ = a/ + b/ + c/ for all a, b, c \in B. (g) Let $\Sigma = \{0, 1\}$ be an alphabet, find Σ^3 and Σ^* .

(h) Describe the set represented by the

In the Boolean algebra (B, +, .,/), show

UNIT – I

regular expression ab + c*.

.

the set Z of integers.

- (a) Define properties of relation and showthat the relation R = {(a, b) : a, b ∈ Z and a + b is even} is an equivalence relation on
- (b) Let $f(x) = \frac{ax}{x+1}$, $x \ne -1$. If (fof)(x) = x find the value of a.

- (a) Define group and show that the set Q+ of positive rational numbers does not form a group for the binary operation * defined by
 a * b = a/b ∀ a, b ∈ Q⁺
- (b) Prove that the order of each sub-group of a finite group G is a divisor of the order of the group G.

UNIT - II

- **4.** (a) Define tautology and verify that the proposition $p \land (p \land r) \Leftrightarrow (p \land q) \land r$ is a tautology.
 - (b) Using principle of mathematical induction show that $10^{2n-1} + 1$ is divisible by 11 for all positive integers n.

- 5. (a) Define modus pones and modus tollens and show that 't' is a valid conclusion from the premises: p ⇒ q, q ⇒ r, r ⇒ s, ~s and p ∨ t
 - (b) Using law of algebra of propositions show that $p \Leftrightarrow q = (p \lor q) \Rightarrow (p \land q)$

UNIT - III

- 6. (a) Define lattice and show that the set D₃₀ of all positive factors of 30 forms a lattice with the relation divisibility.
 - (b) What is complemented lattice? Show that if (L, \land, \lor) is a complemented distributive lattice, then De Morgan's Laws $(a \lor b)/ = a/ \land b/$ and $(a \land b)/ = a/ \lor b/$ holds for all $a, b' \in L$.
- 7. (a) Let B = {1, 2, 3, 4, 6, 12} be the set of positive factor of 12. Two binary

- operations '+' and '.' on B are defined as follows:
- a + b = 1 cm (a, b) and a. b = gcd (a, b) for all $a, b \in B$ A unary operation '' on B is defined as $a' = \frac{12}{12}$ for all $a \in B$.
- $a' = \frac{12}{a}$ for all $a \in B$. Show that (B, +, ., /, a, 6) is a Boolean algebra.
- (b) In the Boolean algebra (B, +, ., /). simplify the Boolean expression [a. (a + b) + (b/ + a).b]/.

UNIT - IV

- (a) Explain regular expression and regular language. Find the language for the regular expressions (a + b)* (a + bb) and a(a + b)*ab.
- (b) Describe the deterministic and nondeterministic finite automaton. How deterministic finite automaton differs from non-deterministic finite automaton?

- (a) Compare the Moore and Mealy machine and prove that both machine have equivalent power.
 - (b) Construct a deterministic finite automata equivalent to $M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\})$ where δ is given as:

Transition function Table

State	Input	
	aa	b
\rightarrow q_0	q 0, q 1	q ₂
q ₁	qo	q ₁
q ₂	_	q0, q1

also draw the transition diagram of equivalent DFA.