

FACULTY OF INFORMATICS

B.E. 4/4 (IT) I-Semester (Supplementary) Examination, June/July 2011 VLSI DESIGN

11	me: Three Hours] [Maximum Marks]	: 75
	Answer ALL questions from Part A. Answer any FIVE questions from Part B.	
	PART—A (Marks: 25)	
1.	What is Threshold Voltage Loss?	2
2.	Sketch nFET-pFET pair to make a CMOS Transmission Gate. Explain the bi-direction switching ability of Transmission Gate.	onal
3.	Define Device Transconductance.	2
4.	Sketch a circuit using CMOS complementary pair to realize a NOT gate and show corresponding sketch giving Layer Pattern for silicon implementation.	
5.	Illustrate Lambda Design Rules.	2
6.	Explain how Propagation Delay is estimated for an Inverter Switching Case.	3
7.	Write two salient features and two drawbacks of Complementary Pass-Transistor Lo (CPL) approach.	gic 2
8.	Sketch a neat logic gate diagram of a Programmable Logic Array (PLA).	3
9.	Sketch a 4-input AOI circuit and write verilog module for the same.	3
10.		2
	PART—B (Marks: 50)	
1.	(a) Explain switching action of an nFET and a pFET.	4
	(b) An n-channel MOSFET has a mobility value of $\mu_n = 560 \text{ cm}^2/\text{V-sec}$ and uses a g oxide with a thickness of $t_{ox} = 90 \times 10^{-8}$ cm. The gate voltage is given as $V_G = 2.5$ V, a the threshold voltage is 0.65 V.	ate
	(i) Calculate the value of C _{OX} in units of F/cm ² .	
	(ii) Find the process transconductance.	
	(iii) Find the device transconductance, if the FET has a channel length of $0.25~\mu m$ a channel width of 2 μm .	nd 6
VS-	—877 (Cont	-

12.	(a)	Sketch and explain layers used to create a MOSFET.	L.
	(b)	List masking sequence and explain each briefly.	. (
13.	Des	scribe CMOS Process Flow using appropriate illustrative diagrams.	10
	(a)		6
	(b)	(i) Find the final voltage during a logic 1 read operation on a DRAM cell with s capacitance, $C_s = 50$ fF and a bit line capacitance, $C_{bit} = 8C_s$. Assume max voltage of $V_s = V_{max} = 2.5$ V on the storage capacitor.	torage timun
	,	(ii) Find the hold time, given leakage current, $I_L = 1$ nA, storage capaci $C_s = 50$ fF and change in voltage across capacitor, $\Delta V = 1$ V.	tance 2+2
15.	(a)	What is Behavioral Modeling? Explain.	6
	(b)	Write a behavioral description of a positive-edge-triggered D-type flip-flop using ve	erilog 4
16.	(a)	Write nFET current-voltage equations and explain briefly.	
	(b)	State the problem of latchup and explain its prevention.	
	(c)	Present a RC switch model for a CMOS inverter.	10
17.	(a)	Explain DC characteristics of a CMOS inverter.	
		Discuss issues in Floor Planning and Routing.	
	(c)	Write an overview of testing CMOS circuits.	10

9940 J