Lecture Plan

Code : CS2305
Issue : D Rev : 03
Subject : Programming Paradigms
 Page : 1 of 3
Unit No : 5
 Period : 1/8

Multithreading

Multithreaded programs extend the idea of multitasking by taking it one level lower: individual programs will appear to do multiple tasks at the same time. Each task is usually called a thread—which is short for thread of control. Programs that can run more than one thread at once are said to be multithreaded
Using Threads to Give Other Tasks a Chance
Here is a simple procedure for running a task in a separate thread:

1. Place the code for the task into the run method of a class that implements the Runnable

interface. That interface is very simple, with a single method:

public interface Runnable

{

void run();

}
You simply implement a class, like this:

class MyRunnable implements Runnable

{

public void run()

{

task code

}

}
2. Construct an object of your class:

Runnable r = new MyRunnable();
3. Construct a Thread object from the Runnable:

Thread t = new Thread(r);

 Page : 2 of 3
4. Start the thread:

t.start();

To make our bouncing-ball program into a separate thread, we need only implement a class BallRunnable and place the code for the animation inside the run method, as in the

following code:

class BallRunnable implements Runnable

{

. . .

public void run()

{

try

{

for (int i = 1; i <= STEPS; i++)

{

ball.move(component.getBounds());

component.repaint();

Thread.sleep(DELAY);

}

}

catch (InterruptedException exception)

{

}

}

. . .

}

Again, we need to catch an InterruptedException that the sleep method threatens to throw. We discuss this exception in the next section. Typically, interruption is used to request that a thread terminates. Accordingly, our run method exits when an InterruptedException occurs
 Page : 3 of 3
 Thread(Runnable target)

constructs a new thread that calls the run() method of the specified target.

 void start()

starts this thread, causing the run() method to be called. This method will return immediately. The new thread runs concurrently.

 void run()

calls the run method of the associated Runnable.

void run()

must be overriden and supplied with instructions for the task that you want to have executed.

Lecture Plan

Code : CS2305
Issue : D Rev : 03
Subject : Programming Paradigms
 Page : 1 of 3
Unit No : 5
 Period : 2/8

Interrupting Threads

A thread terminates when its run method returns, by executing a return statement, after

executing the last statement in the method body, or if an exception occurs that is not

caught in the method. There is a way to force a thread to terminate. However, the interrupt method can be used to request termination of a thread.

To find out whether the interrupted status was set, first call the static Thread.currentThread

method to get the current thread and then call the isInterrupted method:

while (!Thread.currentThread().isInterrupted() && more work to do)

{

do more work

}

The interrupted thread can decide how to react to the interruption. Some threads are so important that they should handle the exception and continue. But quite commonly, a thread will simply want to interpret an interruption as a request for termination. The run method

of such a thread has the following form:

public void run()

{

try

{

. . .

while (!Thread.currentThread().isInterrupted() && more work to do)

{

do more work

}

}

catch(InterruptedException e)

{

// thread was interrupted during sleep or wait

}

 Page : 2 of 3
finally

{

cleanup, if required

}

// exiting the run method terminates the thread

}

The isInterrupted check is neither necessary nor useful if you call the sleep method after every work iteration. If you call the sleep method when the interrupted status is set, it doesn’t sleep. Instead, it clears thestatus (!) and throws an InterruptedException. Therefore, if your loop calls sleep, don’tcheck the interrupted status. Instead, catch the InterruptedException, like this:

public void run()

{

try

{

. . .

while (more work to do)

{

do more work

Thread.sleep(delay);

}

}

catch(InterruptedException e)

{

// thread was interrupted during sleep

}

finally

{

cleanup, if required

}

// exiting the run method terminates the thread

}

Thread States

Threads can be in one of six states:

• New

• Runnable

• Blocked

• Waiting

• Timed waiting

• Terminated
 Page : 3 of 3
New Threads

When you create a thread with the new operator—for example, new Thread(r)—the thread is not yet running

Runnable Threads

Once you invoke the start method, the thread is in the runnable state. A runnable

thread may or may not actually be running

Blocked and Waiting Threads

When a thread is blocked or waiting, it is temporarily inactive. It doesn’t execute any

code and it consumes minimal resources

Terminated Threads

A thread is terminated for one of two reasons:

• It dies a natural death because the run method exits normally.

• It dies abruptly because an uncaught exception terminates the run method
API
• void join()

waits for the specified thread to terminate.

• void join(long millis)

waits for the specified thread to die or for the specified number of milliseconds to pass.

• Thread.State getState() 5.0

gets the state of this thread; one of NEW, RUNNABLE, BLOCKED, WAITING, TIMED_WAITING, or TERMINATED.

• void stop()

stops the thread. This method is deprecated.

• void suspend()

suspends this thread’s execution. This method is deprecated.

• void resume()

resumes this thread. This method is only valid after suspend() has been invoked.
Lecture Plan

Code : CS2305
Issue : D Rev : 03
Subject : Programming Paradigms
 Page : 1 of 2

Unit No : 5
 Period : 3/8

Thread Properties
Thread Priorities

In the Java programming language, every thread has a priority.
void setPriority(int newPriority)

sets the priority of this thread. The priority must be between Thread.MIN_PRIORITY and Thread.MAX_PRIORITY. Use Thread.NORM_PRIORITY for normal priority.

• static int MIN_PRIORITY

is the minimum priority that a Thread can have. The minimum priority value is 1.

• static int NORM_PRIORITY

is the default priority of a Thread. The default priority is 5.

• static int MAX_PRIORITY

is the maximum priority that a Thread can have. The maximum priority value is 10.

• static void yield()

causes the currently executing thread to yield. If there are other runnable threads with a priority at least as high as the priority of this thread, they will be scheduled next. Note that this is a static method

Daemon Threads

You can turn a thread into a daemon thread by calling

t.setDaemon(true);

There is nothing demonic about such a thread. A daemon is simply a thread that has no other role in life than to serve others. Examples are timer threads that send regular “timer ticks” to other threads or threads that clean up stale cache entries
Page : 2 of 2
Handlers for Uncaught Exceptions

The ThreadGroup class implements the Thread.UncaughtExceptionHandler interface. Its uncaught-Exception method takes the following action:

1. If the thread group has a parent, then the uncaughtException method of the parent group is called.

2. Otherwise, if the Thread.getDefaultExceptionHandler method returns a non-null handler, it is called.

3. Otherwise, if the Throwable is an instance of ThreadDeath, nothing happens.

4. Otherwise, the name of the thread and the stack trace of the Throwable are printed on System.err

 void uncaughtException(Thread t, Throwable e)

defined to log a custom report when a thread is terminated with an uncaught

exception

Parameters:

 t The thread that was terminated due to an uncaught exception

e The uncaught exception object

Lecture Plan

Code : CS2305
 Issue : D Rev : 03
Subject : Programming Paradigms
 Page : 1 of 2

Unit No : 5 Period : 4/8

Synchronization- Part I

In most practical multithreaded applications, two or more threads need to share access to the same data. What happens if two threads have access to the same object and each calls a method that modifies the state of the object? As you might imagine, the threads can step on each other’s toes. Depending on the order in which the data were accessed, corrupted objects can result. Such a situation is often called a race condition
An Example of a Race Condition

To avoid corruption of shared data by multiple threads, you must learn how to synchronize the access. In this section, you’ll see what happens if you do not use synchronization.

In the next section, you’ll see how to synchronize data access., we simulate a bank with a number of accounts. We randomly generate transactions that move money between these accounts. Each account has one thread. Each transaction moves a random amount of money from the account serviced by the thread to another random account. The simulation code is straightforward. We have the class Bank with the method transfer.

This method transfers some amount of money from one account to another. (We don’t

yet worry about negative account balances.) Here is the code for the transfer method of

the Bank class.
public void transfer(int from, int to, double amount)

// CAUTION: unsafe when called from multiple threads

{

System.out.print(Thread.currentThread());

accounts[from] -= amount;

System.out.printf(" %10.2f from %d to %d", amount, from, to);

Page : 2 of 2
accounts[to] += amount;

System.out.printf(" Total Balance: %10.2f%n", getTotalBalance());

}

Here is the code for the TransferRunnable class. Its run method keeps moving money out of

a fixed bank account. In each iteration, the run method picks a random target account

and a random amount, calls transfer on the bank object, and then sleeps.

class TransferRunnable implements Runnable

{

. . .

public void run()

{

try

{

int toAccount = (int) (bank.size() * Math.random());

double amount = maxAmount * Math.random();

bank.transfer(fromAccount, toAccount, amount);

Thread.sleep((int) (DELAY * Math.random()));

}

catch(InterruptedException e) {}

}

}

When this simulation runs, we do not know how much money is in any one bank

account at any time. But we do know that the total amount of money in all the accounts

should remain unchanged because all we do is move money from one account to

another

Lecture Plan

Code : CS2305
 Issue : D Rev : 03
Subject : Programming Paradigms
 Page : 1 of 3
Unit No : 5
 Period : 5/8

Synchronization- Part II
The Race Condition Explained

In the previous section, we ran a program in which several threads updated bank account balances. After a while, errors crept in and some amount of money was either lost or spontaneously created. This problem occurs when two threads aresimultaneously trying to update an account. Suppose two threads simultaneously

carry out the instruction

accounts[to] += amount;

The problem is that these are not atomic operations. The instruction might be processed

as follows:

1. Load accounts[to] into a register.

2. Add amount.

3. Move the result back to accounts[to].

Now, suppose the first thread executes Steps 1 and 2, and then it is preempted. Suppose

the second thread awakens and updates the same entry in the account array.

Then, the first thread awakens and completes its Step 3.
[image: image1.png]
Simultaneous access by two threads
Page : 2 of 3
Lock Objects

Starting with Java SE 5.0, there are two mechanisms for protecting a code block

from concurrent access. The Java language provides a synchronized keyword for this

purpose, and Java SE 5.0 introduced the ReentrantLock class. The synchronized keyword

automatically provides a lock as well as an associated “condition,” which makes it

powerful and convenient for most cases that require explicit locking. However, we

believe that it is easier to understand the synchronized keyword after you have seen

locks and conditions in isolation
Read/Write Locks

The java.util.concurrent.locks package defines two lock classes, the ReentrantLock that we already discussed and the ReentrantReadWriteLock class. The latter is useful when there are many threads that read from a data structure and fewer threads that modify it. In that situation, it makes sense to allow shared access for the readers. Of course, a writer must still have exclusive access.

Here are the steps that are necessary to use read/write locks:

1. Construct a ReentrantReadWriteLock object:

private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

2. Extract read and write locks:

private Lock readLock = rwl.readLock();

private Lock writeLock = rwl.writeLock();

3. Use the read lock in all accessors:

public double getTotalBalance()

{

readLock.lock();

try { . . . }

finally { readLock.unlock(); }

}

4. Use the write lock in all mutators:

public void transfer(. . .)

{

 Page : 3 of 3
writeLock.lock();

try { . . . }

finally { writeLock.unlock(); }

}

[image: image2.png]
Condition Objects

Often, a thread enters a critical section, only to discover that it can’t proceed until a condition is fulfilled. You use a condition object to manage threads that have acquired

a lock but cannot do useful work.
Lecture Plan

Code : CS2305
 Issue : D Rev : 03
Subject : Programming Paradigms
 Page : 1 of 3
Unit No : 5 Period : 6/8

Thread-Safe Collections

If multiple threads concurrently modify a data structure such as a hash table, then it is easily possible to damage the data structure. For example, one thread may begin to insert a new element. Suppose it is preempted while it is in the middle of rerouting the links between the hash table’s buckets.

If another thread starts traversing the same list, it may follow invalid links and create havoc, perhaps throwing exceptions or being trapped in an infinite loop.You can protect a shared data structure by supplying a lock, but it is usually easier to choose a thread-safe implementation instead.

The blocking queues that we discussed in the preceding section are, of course, thread-safe collections. In the following sections, we discuss the other thread-safe collections that the Java library provides.

Efficient Maps, Sets, and Queues

The java.util.concurrent package supplies efficient implementations for maps, sorted sets, and queues: ConcurrentHashMap, ConcurrentSkipListMap, ConcurrentSkipListSet, and ConcurrentLinkedQueue.

These collections use sophisticated algorithms that minimize contention by allowing

concurrent access to different parts of the data structure.

Unlike in most collections, the size method does not necessarily operate in constant time. Determining the current size of one of these collections usually requires traversal. The collections return weakly consistent iterators. That means that the iterators may or may not reflect all modifications that are made after they were constructed, but they will not return a value twice and they will not throw a ConcurrentModificationException.
Page : 2 of 3
Older Thread-Safe Collections

Ever since the initial release of Java, the Vector and Hashtable classes provided thread-safe implementations of a dynamic array and a hash table. In Java SE 1.2, these classes were

declared obsolete and replaced by the ArrayList and HashMap classes. Those classes are not

thread-safe.

 Instead, a different mechanism is supplied in the collections library. Any collection class can be made thread-safe by means of a synchronization wrapper:
List<E> synchArrayList = Collections.synchronizedList(new ArrayList<E>());

Map<K, V> synchHashMap = Collections.synchronizedMap(new HashMap<K, V>());
The methods of the resulting collections are protected by a lock, providing thread-safe access.
Executors

The various Executor implementations provide different execution policies to be set while executing the tasks. For example, the ThreadPool supports the following policies:

· newFixedThreadPool: Creates threads as tasks are submitted, up to the maximum pool size, and then attempts to keep the pool size constant.

· newCachedThreadPool: Can add new threads when demand increases, no bounds on the size of the pool.

· newSingleThreadExecutor: Single worker thread to process tasks, Guarantees order of execution based on the queue policy (FIFO, LIFO, priority order).

· newScheduledThreadPool: Fixed-size, supports delayed and periodic task execution.
Thread Pools

The pool will run the submitted task at its earliest convenience. When you call submit, you get back a Future object that you can use to query the state of the task.

The first submit method returns an odd-looking Future<?>. You can use such an object to

call isDone, cancel, or isCancelled. But the get method simply returns null upon completion.

Page : 3 of 3

The second version of submit also submits a Runnable, and the get method of the Future returns the given result object upon completion.

The third version submits a Callable, and the returned Future gets the result of the computation when it is ready.
Scheduled Execution
The ScheduledExecutorService interface has methods for scheduled or repeated execution of

tasks.
· ScheduledExecutorService newScheduledThreadPool(int threads)

returns a thread pool that uses the given number of threads to schedule

tasks.

· • ScheduledExecutorService newSingleThreadScheduledExecutor()

returns an executor that schedules tasks in a single thread.
· ScheduledFuture<V> schedule(Callable<V> task, long time, TimeUnit unit)

· ScheduledFuture<?> schedule(Runnable task, long time, TimeUnit unit)

schedules the given task after the given time has elapsed.

· ScheduledFuture<?> scheduleAtFixedRate(Runnable task, long initialDelay, long period,TimeUnit unit)

schedules the given task to run periodially, every period units, after the initial

delay has elapsed.

· ScheduledFuture<?> scheduleWithFixedDelay(Runnable task, long initialDelay, long delay, TimeUnit unit)

schedules the given task to run periodially, with delay units between completion

of one invocation and the start of the next, after the initial delay has elapsed.
Lecture Plan

Code : CS2305
 Issue : D Rev : 03
Subject : Programming Paradigms
 Page : 1 of 3
Unit No : 5 Period : 7/8
Synchronizers

The java.util.concurrent package contains several classes that help manage a set of collaborating threads.These mechanisms have “canned functionality” for common rendezvous patterns between threads.

If you have a set of collaborating threads that follows one of these behavior patterns, you should simply reuse the appropriate library class instead of trying to come up with a handcrafted collection of locks and conditions
[image: image3.png]
Page : 2 of 3
Threads and Events

The Swing API was designed to be powerful, flexible, and easy to use. In particular, we wanted to make it easy for programmers to build new Swing components, whether from scratch or by extending components that we provide.

For this reason, we do not require Swing components to support access from multiple threads. Instead, we make it easy to send requests to a component so that the requests run on a single thread.

Here are the sections of this article:

· The single-thread rule: Swing components can be accessed by only one thread at a time. Generally, this thread is the event-dispatching thread.

· Exceptions to the rule: A few operations are guaranteed to be thread-safe.

· Event dispatching: If you need access to the UI from outside event-handling or drawing code, then you can use the SwingUtilities invokeLater()or invokeAndWait() method.

· Creating threads: If you need to create a thread -- for example, to handle a job that's computationally expensive or I/O bound -- you can use a thread utility class such as SwingWorker or Timer.
The single-thread rule

Once a Swing component has been realized, all code that might affect or depend on the state of that component should be executed in the event-dispatching thread.
Exceptions to the rule

There are a few exceptions to the rule that all code that might affect a realized Swing component must run in the event-dispatching thread:
Page : 3 of 3
Event dispatching

Most post-initialization GUI work naturally occurs in the event-dispatching thread. Once the GUI is visible, most programs are driven by events such as button actions or mouse clicks, which are always handled in the event-dispatching thread

Creating threads
· SwingWorker: Creates a background thread to execute time-consuming operations.
· Timer: Creates a thread that executes some code one or more times, with a user-specified
delay between executions.
Lecture Plan

Code : CS2305
 Issue : D Rev : 03
Subject : Programming Paradigms
 Page : 1 of 2

Unit No : 5 Period : 8/8
Event-Driven Programming

In computer programming, event-driven programming or event-based programming is a programming paradigm in which the flow of the program is determined by events—i.e., sensor outputs or user actions (mouse clicks, key presses) or messages from other programs or thread
In Java
· user-interface objects (such as buttons, list boxes, menus, etc.) keep an internal list of "listeners".

· These listeners are notified (that is, the listener’s methods are called) when the user-interface object generates an event.

· To add listeners to the list you make a call like yellowButton.addActionListener(...). What you put in the place of the ... must be an object implementing the ActionListener interface, so it will have methods capable of processing the events generated. Of course, if the interface is not a button or menu, ActionListener may not be the appropriate interface—there are eleven listener interfaces.

How to get an object implementing a listener interface
1. You could, for example, make your panel class implement any listener interface by the method used for MouseMotionListener in DragTest.java:
class MousePanel extends JPanel

implements MouseMotionListener

Page : 2 of 2
{ ...//implement mouseClicked and mouseDragged
2. You can use an anonymous inner class as illustrated in all our programs for the WindowListener interface, or by the treatment of MouseListener in DragTest.java
...addMouseListener(new MouseAdapter()

{ public void mousePressed(

MouseEvent evt)

{ ...

3. You can create an Action object as illustrated in SeparateGUITest.java:
class ColorAction extends AbstractAction

{ public Coloraction(...

{ putValue(Action.NAME,...)

...

// construct the action from given parameters
}

public void actionPerformed(ActionEvent evt)

}

blueAction = new ColorAction("blue", ...);

and add this object as a listener:

blueButton.addActionListener(blueAction);

