Explain the different types of compensation network in details.

OR

Find the Z-transform of the following functions:

- i)  $f(t) = u(t) e^{-2.t}$
- ii)  $f(t) = (1 e^{-5.t})$ , Sampling time T = 0.2 sec.

#### Unit-V

- 5. a) What are the advantages of state space approach over transfer function as well as graphical approach for the analysis of control system?
  - b) Write short note on state space and state variable.
  - Explain the relationship in between the state equation and transfer function.
  - Explain the concept of Controllability and Observability in detail.

#### OR

The transfer function of a system is given by

$$\frac{Y(s)}{U(s)} = \frac{s^2 + 3.s + 2}{s^3 + 9.s^2 + 26.s + 24}$$
. Determine the state model

by using direct decomposition method.

\*\*\*\*\*

Roll No.....

EC - 502

B.E. V Semester

Examination, December 2015

Control Systems

Time: Three Hours

Maximum Marks: 70

- *Note:* i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
  - ii) All parts of each questions are to be attempted at one place.
  - iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
  - iv) Except numericals, Derivation, Design and Drawing etc.

# Unit-I

- a) Write down the advantages and disadvantages of transfer function approach.
  - Write a short note on Manson's Gain Formula which is used for solving signal flow graph.
  - c) What are the basic differences between open and closed loop control system and which one is preferred mostly and why?

[3]

d) The signal flow graph for a system is given below. Find

the transfer function  $\frac{Y(s)}{U(s)}$ 



Determine  $\frac{C(s)}{R(s)}$  by reducing the block diagram for the system given below.



# Unit-II

- 2. a) Write a short note on Steady state error.
  - Explain the concept of Relative Stability and Absolute Stability.
  - Write a short note on standard test signals for analyzing the time response of any control system.
  - d) For a unity feedback control system the forward path gain

$$G(s) = \frac{K}{s(s+2)(s^2+2s+2)}, \text{ then find the value of K for}$$

which the Root-locus crosses the imaginary axis and also find the value of angle of departure for complex roots.

# OR

For a unity feedback control system having its forward

path transfer functions as, 
$$G(s) = \frac{20}{(s+1)\cdot(s+5)}$$
.

Determine characteristic equation of the system  $\omega_n$ ,  $\omega_d$ ,  $t_p$ ,  $M_p$ , damping factor and time at which First overshoot occurs.

#### Unit-III

- a) Explain the term Gain Margin.
  - b) Write a short note on the advantages of Bode plot.
  - c) The limitation of root locus analysis is over come by Bode plot, this sentence is true or false, explain in detail.
  - d) A unity feedback control system with open loop transfer function  $G(s) = \frac{50(s+60)}{(s+2)(s+10)}$ . Draw the bode plot and also, find the gain Crossover frequency, phase crossover frequency, gain margin as well as phase margin.

OR

Draw the Nyquist plot for  $G(s) \cdot H(s) = \frac{1}{s^2(1+sT_1)(1+sT_2)}$  and make a comment on stability.

# Unit-IV

- 4. a) Write a short note on Compensation Networks.
  - Write down the advantages of phase lead-lag compensation network.
  - Explain the PID controller in details.