Time: 3hours Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

- 1.a) Write down the expression for the instantaneous power, and hence derive the equation for the average power.
 - b) A series R-L-C circuit consists of 100 ohms resistor and an inductor of 0.318 Henry and a capacitor of unknown value. This circuit is supplied by 230V, 50 HZ supply and draws a current of 2.3 ohms, and the current is in phase with the supply voltage. Find i) the value of the capacitance, and the power supplied by the source.

 [8+8]
- 2.a) Derive the equation for the voltage generated in a d.c generator.
 - b) A 2 pole d.c generator has 200 conductors on its armature. It is driven by a prime mover at a constant speed of 600 r.p.m. If the flux per pole is 0.1 wb, calculate the emf generated. [8+8]
- 3. With a neat sketch explain in detail moving coil attraction type instrument. [16]
- 4.a) Compare Half wave, Center tapped full wave and Bridge rectifiers.
 - b) Explain the following terms:
 - i) Ripple factor ii) Peak Inverse voltage
 - iii) Efficiency iv) TUF
 - v) Form factor v) Peak factor. [6+10]
- 5.a) Draw and explain UJT characteristics also give their applications.
 - b) Draw a family of drain characteristics and mutual characteristics of an n-channel FET and explain the shape of the curves qualitatively. [8+8]
- 6.a) Draw the circuit of a current shunt feedback amplifier and explain.
 - b) An amplifier has a gain of 10,000 without feedback. The gain is reduced to 50 with negative feedback. Find the feedback factor.
 - c) Explain the principle of operations of Tuned amplifiers. [4+4+8]
- 7.a) With the help of neat circuit diagram, explain the following applications of OP-AMP:
 - i) Multiplier ii) Differentiator iii) Subtractor.
 - b) Design a scaling adder circuit using OP-AMP, to give the output voltage $V_0 = -(3V_1 + 4V_2 + 5V_3)$, where V_1 , V_2 and V_3 are the input voltages given to the circuit.
- 8.a) With a circuit diagram, explain Counter type A-to-D converter.
 - b) Give the Boolean functions: F = xy + x'y' + y'z
 - i) Implement with only OR and NOT gates.
 - ii) Implement with only AND and NOT gates. [8+8]

Time: 3hours Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

- 1. With a neat sketch explain in detail moving coil attraction type instrument. [16]
- 2.a) Compare Half wave, Center tapped full wave and Bridge rectifiers.
 - b) Explain the following terms:
 - i) Ripple factor ii) Peak Inverse voltage
 - iii) Efficiency iv) TUF
 - v) Form factor v) Peak factor. [6+10]
- 3a) Draw and explain UJT characteristics also give their applications.
 - b) Draw a family of drain characteristics and mutual characteristics of an n-channel FET and explain the shape of the curves qualitatively. [8+8]
- 4.a) Draw the circuit of a current shunt feedback amplifier and explain.
 - b) An amplifier has a gain of 10,000 without feedback. The gain is reduced to 50 with negative feedback. Find the feedback factor.
 - c) Explain the principle of operations of Tuned amplifiers. [4+4+8]
- 5.a) With the help of neat circuit diagram, explain the following applications of OP-AMP:
 - i) Multiplier
- ii) Differentiator
- iii) Subtractor.
- b) Design a scaling adder circuit using OP-AMP, to give the output voltage $V_0 = -(3V_1 + 4V_2 + 5V_3)$, where V_1 , V_2 and V_3 are the input voltages given to the circuit. [10+6]
- 6.a) With a circuit diagram, explain Counter type A-to-D converter.
 - b) Give the Boolean functions: F = xy + x'y' + y'z
 - i) Implement with only OR and NOT gates.
 - ii) Implement with only AND and NOT gates.

[8+8]

- 7.a) Write down the expression for the instantaneous power, and hence derive the equation for the average power.
 - b) A series R-L-C circuit consists of 100 ohms resistor and an inductor of 0.318 Henry and a capacitor of unknown value. This circuit is supplied by 230V, 50 HZ supply and draws a current of 2.3 ohms, and the current is in phase with the supply voltage. Find i) the value of the capacitance, and the power supplied by the source.

 [8+8]
- 8.a) Derive the equation for the voltage generated in a d.c generator.
 - b) A 2 pole d.c generator has 200 conductors on its armature. It is driven by a prime mover at a constant speed of 600 r.p.m. If the flux per pole is 0.1 wb, calculate the emf generated. [8+8]

* * * * *

Time: 3hours Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

- 1.a) Draw and explain UJT characteristics also give their applications.
- b) Draw a family of drain characteristics and mutual characteristics of an n-channel FET and explain the shape of the curves qualitatively. [8+8]
- 2.a) Draw the circuit of a current shunt feedback amplifier and explain.
 - b) An amplifier has a gain of 10,000 without feedback. The gain is reduced to 50 with negative feedback. Find the feedback factor.
 - c) Explain the principle of operations of Tuned amplifiers.

[4+4+8]

- 3.a) With the help of neat circuit diagram, explain the following applications of OP-AMP:
 - i) Multiplier
- ii) Differentiator
- iii) Subtractor.
- b) Design a scaling adder circuit using OP-AMP, to give the output voltage $V_0 = -(3V_1 + 4V_2 + 5V_3)$, where V_1 , V_2 and V_3 are the input voltages given to the circuit.
- 4.a) With a circuit diagram, explain Counter type A-to-D converter.
 - b) Give the Boolean functions: F = xy + x'y' + y'z
 - i) Implement with only OR and NOT gates.
 - ii) Implement with only AND and NOT gates.

[8+8]

- 5.a) Write down the expression for the instantaneous power, and hence derive the equation for the average power.
 - b) A series R-L-C circuit consists of 100 ohms resistor and an inductor of 0.318 Henry and a capacitor of unknown value. This circuit is supplied by 230V, 50 HZ supply and draws a current of 2.3 ohms, and the current is in phase with the supply voltage. Find i) the value of the capacitance, and the power supplied by the source.

 [8+8]
- 6.a) Derive the equation for the voltage generated in a d.c generator.
 - b) A 2 pole d.c generator has 200 conductors on its armature. It is driven by a prime mover at a constant speed of 600 r.p.m. If the flux per pole is 0.1 wb, calculate the emf generated. [8+8]
- 7. With a neat sketch explain in detail moving coil attraction type instrument. [16]
- 8.a) Compare Half wave, Center tapped full wave and Bridge rectifiers.
 - b) Explain the following terms:
 - i) Ripple factor
- ii) Peak Inverse voltage
- iii) Efficiency
- iv) TUF
- v) Form factor
- v) Peak factor.

[6+10]

Time: 3hours Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

- 1.a) With the help of neat circuit diagram, explain the following applications of OP-AMP:
 - i) Multiplier
- ii) Differentiator
- iii) Subtractor.
- b) Design a scaling adder circuit using OP-AMP, to give the output voltage $V_0 = -(3V_1 + 4V_2 + 5V_3)$, where V_1 , V_2 and V_3 are the input voltages given to the circuit.
- 2.a) With a circuit diagram, explain Counter type A-to-D converter.
 - b) Give the Boolean functions: F = xy + x'y' + y'z
 - i) Implement with only OR and NOT gates.
 - ii) Implement with only AND and NOT gates.

[8+8]

- 3.a) Write down the expression for the instantaneous power, and hence derive the equation for the average power.
 - b) A series R-L-C circuit consists of 100 ohms resistor and an inductor of 0.318 Henry and a capacitor of unknown value. This circuit is supplied by 230V, 50 HZ supply and draws a current of 2.3 ohms, and the current is in phase with the supply voltage. Find i) the value of the capacitance, and the power supplied by the source. [8+8]
- 4.a) Derive the equation for the voltage generated in a d.c generator.
 - b) A 2 pole d.c generator has 200 conductors on its armature. It is driven by a prime mover at a constant speed of 600 r.p.m. If the flux per pole is 0.1 wb, calculate the emf generated. [8+8]
- 5. With a neat sketch explain in detail moving coil attraction type instrument. [16]
- 6.a) Compare Half wave, Center tapped full wave and Bridge rectifiers.
 - b) Explain the following terms:
 - i) Ripple factor
- ii) Peak Inverse voltage
- iii) Efficiency
- iv) TUF
- v) Form factor
- v) Peak factor.

[6+10]

- 7.a) Draw and explain UJT characteristics also give their applications.
 - b) Draw a family of drain characteristics and mutual characteristics of an n-channel FET and explain the shape of the curves qualitatively. [8+8]
- 8.a) Draw the circuit of a current shunt feedback amplifier and explain.
 - b) An amplifier has a gain of 10,000 without feedback. The gain is reduced to 50 with negative feedback. Find the feedback factor.
 - c) Explain the principle of operations of Tuned amplifiers.