I B.TECH - EXAMINATIONS, JUNE - 2011
 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING
 (BIOTECHNOLOGY)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Write down the expression for the instantaneous power, and hence derive the equation for the average power.
b) A series R-L-C circuit consists of 100 ohms resistor and an inductor of 0.318 Henry and a capacitor of unknown value. This circuit is supplied by 230V, 50 HZ supply and draws a current of 2.3 ohms, and the current is in phase with the supply voltage. Find i) the value of the capacitance, and the power supplied by the source.
[8+8]
2.a) Derive the equation for the voltage generated in a d.c generator.
b) A 2 pole d.c generator has 200 conductors on its armature. It is driven by a prime mover at a constant speed of $600 \mathrm{r} . \mathrm{p} . \mathrm{m}$. If the flux per pole is 0.1 wb , calculate the emf generated.
3. With a neat sketch explain in detail moving coil attraction type instrument.
4.a) Compare Half wave, Center tapped full wave and Bridge rectifiers.
b) Explain the following terms:
i) Ripple factor
ii) Peak Inverse voltage
iii) Efficiency
iv) TUF
v) Form factor
v) Peak factor.
[6+10]
5.a) Draw and explain UJT characteristics also give their applications.
b) Draw a family of drain characteristics and mutual characteristics of an n-channel FET and explain the shape of the curves qualitatively.
6.a) Draw the circuit of a current shunt feedback amplifier and explain.
b) An amplifier has a gain of 10,000 without feedback. The gain is reduced to 50 with negative feedback. Find the feedback factor.
c) Explain the principle of operations of Tuned amplifiers. [4+4+8]
7.a) With the help of neat circuit diagram, explain the following applications of OP-AMP:
i) Multiplier
ii) Differentiator
iii) Subtractor.
b) Design a scaling adder circuit using OP-AMP, to give the output voltage $V_{O}=-\left(3 V_{1}+4 V_{2}+5 V_{3}\right)$, where V_{1}, V_{2} and V_{3} are the input voltages given to the circuit.
[10+6]
8.a) With a circuit diagram, explain Counter type A-to-D converter.
b) Give the Boolean functions: $F=x y+x^{\prime} y^{\prime}+y^{\prime} z$
i) Implement with only OR and NOT gates.
ii) Implement with only AND and NOT gates.

I B.TECH - EXAMINATIONS, JUNE - 2011 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (BIOTECHNOLOGY)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1. With a neat sketch explain in detail moving coil attraction type instrument.
2.a) Compare Half wave, Center tapped full wave and Bridge rectifiers.
b) Explain the following terms:
i) Ripple factor
ii) Peak Inverse voltage
iii) Efficiency
iv) TUF
v) Form factor
v) Peak factor.

3a) Draw and explain UJT characteristics also give their applications.
b) Draw a family of drain characteristics and mutual characteristics of an n-channel

FET and explain the shape of the curves qualitatively.
[8+8]
4.a) Draw the circuit of a current shunt feedback amplifier and explain.
b) An amplifier has a gain of 10,000 without feedback. The gain is reduced to 50 with negative feedback. Find the feedback factor.
c) Explain the principle of operations of Tuned amplifiers.
5.a) With the help of neat circuit diagram, explain the following applications of OP-AMP:
i) Multiplier
ii) Differentiator
iii) Subtractor.
b) Design a scaling adder circuit using OP-AMP, to give the output voltage $V_{O}=-\left(3 V_{1}+4 V_{2}+5 V_{3}\right)$, where V_{1}, V_{2} and V_{3} are the input voltages given to the circuit.
[10+6]
6.a) With a circuit diagram, explain Counter type A-to-D converter.
b) Give the Boolean functions: $F=x y+x^{\prime} y^{\prime}+y^{\prime} z$
i) Implement with only OR and NOT gates.
ii) Implement with only AND and NOT gates.
7.a) Write down the expression for the instantaneous power, and hence derive the equation for the average power.
b) A series R-L-C circuit consists of 100 ohms resistor and an inductor of 0.318 Henry and a capacitor of unknown value. This circuit is supplied by $230 \mathrm{~V}, 50 \mathrm{HZ}$ supply and draws a current of 2.3 ohms, and the current is in phase with the supply voltage. Find i) the value of the capacitance, and the power supplied by the source.
8.a) Derive the equation for the voltage generated in a d.c generator.
b) A 2 pole d.c generator has 200 conductors on its armature. It is driven by a prime mover at a constant speed of 600 r.p.m. If the flux per pole is 0.1 wb , calculate the emf generated.

I B.TECH - EXAMINATIONS, JUNE - 2011
 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (BIOTECHNOLOGY)

Time: 3hours
Max.Marks:80

Answer any FIVE questions
 All questions carry equal marks

1.a) Draw and explain UJT characteristics also give their applications.
b) Draw a family of drain characteristics and mutual characteristics of an n-channel FET and explain the shape of the curves qualitatively.
[8+8]
2.a) Draw the circuit of a current shunt feedback amplifier and explain.
b) An amplifier has a gain of 10,000 without feedback. The gain is reduced to 50 with negative feedback. Find the feedback factor.
c) Explain the principle of operations of Tuned amplifiers.
3.a) With the help of neat circuit diagram, explain the following applications of OP-AMP:
i) Multiplier
ii) Differentiator
iii) Subtractor.
b) Design a scaling adder circuit using OP-AMP, to give the output voltage $V_{O}=-\left(3 V_{1}+4 V_{2}+5 V_{3}\right)$, where V_{1}, V_{2} and V_{3} are the input voltages given to the circuit.
[10+6]
4.a) With a circuit diagram, explain Counter type A-to-D converter.
b) Give the Boolean functions: $F=x y+x^{\prime} y^{\prime}+y^{\prime} z$
i) Implement with only OR and NOT gates.
ii) Implement with only AND and NOT gates.
5.a) Write down the expression for the instantaneous power, and hence derive the equation for the average power.
b) A series R-L-C circuit consists of 100 ohms resistor and an inductor of 0.318 Henry and a capacitor of unknown value. This circuit is supplied by 230V, 50 HZ supply and draws a current of 2.3 ohms, and the current is in phase with the supply voltage. Find i) the value of the capacitance, and the power supplied by the source.
6.a) Derive the equation for the voltage generated in a d.c generator.
b) A 2 pole d.c generator has 200 conductors on its armature. It is driven by a prime mover at a constant speed of 600 r.p.m. If the flux per pole is 0.1 wb , calculate the emf generated.
7. With a neat sketch explain in detail moving coil attraction type instrument.
8.a) Compare Half wave, Center tapped full wave and Bridge rectifiers.
b) Explain the following terms:
i) Ripple factor
ii) Peak Inverse voltage
iii) Efficiency
iv) TUF
v) Form factor
v) Peak factor.
[6+10

I B.TECH - EXAMINATIONS, JUNE - 2011 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (BIOTECHNOLOGY)

Time: 3hours
Max.Marks:80

Answer any FIVE questions

All questions carry equal marks
1.a) With the help of neat circuit diagram, explain the following applications of OP-AMP:
i) Multiplier
ii) Differentiator
iii) Subtractor.
b) Design a scaling adder circuit using OP-AMP, to give the output voltage $V_{O}=-\left(3 V_{1}+4 V_{2}+5 V_{3}\right)$, where V_{1}, V_{2} and V_{3} are the input voltages given to the circuit.
[10+6]
2.a) With a circuit diagram, explain Counter type A-to-D converter.
b) Give the Boolean functions: $F=x y+x^{\prime} y^{\prime}+y^{\prime} z$
i) Implement with only OR and NOT gates.
ii) Implement with only AND and NOT gates.
[8+8]
3.a) Write down the expression for the instantaneous power, and hence derive the equation for the average power.
b) A series R-L-C circuit consists of 100 ohms resistor and an inductor of 0.318 Henry and a capacitor of unknown value. This circuit is supplied by 230V, 50 HZ supply and draws a current of 2.3 ohms, and the current is in phase with the supply voltage. Find i) the value of the capacitance, and the power supplied by the source.
4.a) Derive the equation for the voltage generated in a d.c generator.
b) A 2 pole d.c generator has 200 conductors on its armature. It is driven by a prime mover at a constant speed of 600 r.p.m. If the flux per pole is 0.1 wb , calculate the emf generated.
5. With a neat sketch explain in detail moving coil attraction type instrument.
6.a) Compare Half wave, Center tapped full wave and Bridge rectifiers.
b) Explain the following terms:
i) Ripple factor
ii) Peak Inverse voltage
iii) Efficiency
iv) TUF
v) Form factor
v) Peak factor.
7.a) Draw and explain UJT characteristics also give their applications.
b) Draw a family of drain characteristics and mutual characteristics of an n-channel FET and explain the shape of the curves qualitatively.
8.a) Draw the circuit of a current shunt feedback amplifier and explain.
b) An amplifier has a gain of 10,000 without feedback. The gain is reduced to 50 with negative feedback. Find the feedback factor.
c) Explain the principle of operations of Tuned amplifiers. [4+4+8]

