FACULTY OF ENGINEERING B.E. 2/4 (E & EE) I Semester (New) (Main) Examination, December 2011 ELECTRICAL CIRCUITS – I

Time: 3 Hours]

[Max. Marks: 75

Note:

Answer all questions of Part A. Answer any five questions

from Part B.

PART - A

(25 Marks)

1. Explain passive sign convention.

2

2. Find "V_o" and " i " in the circuit shown in Fig. 1

3

Fig. 1

3. Find the voltage "V" in the circuit shown in Fig. 2

3

Fig. 2

4. Find the Norton equivalent at terminals a-b in Fig. 3

3

Fig. 3

Code No.: 5352/N

5. Find the average value of the periodic wave form in Fig. 4

3

- 6. For an inductive circuit draw
 - a) Phaser diagram
 - b) Power triangle

2

7. Find the average power dissipated in a network whose input current and voltage are the following:

$$i = 5 \sin (wt + 40^{\circ})$$
, $v = 10 \sin (wt + 40^{\circ})$.

8. A filter is the form of a RLC series circuit is designed to operate at a resonant frequency of 10 KHz. Included with the filter is a 10 mH inductor and a 5 ohm resistor. Determine the bandwidth of the filter.

9. Three leads each of resistance 30Ω are connected in star to a 415 V, three phase supply. Determine the system phase voltage and phase currents.

3

2

10. Find the average and effective values of the following non-sinusoidal wave.

$$v = 100 + 50 \sin wt + 25 \sin 2 wt$$

2

PART - B

(50 Marks)

11. Find the current in the resistor R = 2 Ohms, Fig. 5

10

Fig. 5

12. Determine the three mesh currents Fig. 6

10

2

Code No.: 5352/N

 Using Norton's theorem determine the current in the 1- Ohm resistor connected across A-B, Fig. 7

10

Fig. 7

14. In a series- parallel circuit, the parallel branches B and C are in series with A. The impedances are $Z_A = (2+j8)$ $Z_B = (4+J3)$, $Z_C = (4-j5.33)$ Ohms. If the current in the series impedance Z_A is (25+j0) amps, determine th branch currents, branch voltages and the total voltage. Draw the complete Phasor diagram.

10

- 15 A constant voltage at a frequency of 1 MHz is applied to an inductor in series with a variable capacitor, when the capacitor is set 500 pF, the current hasits max. value, while it is reduced to one-half when the capacitance is 600 pF. Find:
 - i) The resistance
 - ii) The inductance
 - iii) Q-factor of the inductor.

10

16. Three 100 – Ohm non-inductive resistances are connected in a) star, b) delta across a 400 V, 50 Hz, 3-phase supply. Calculate the power taken from the supply in each case. In the event of one of the three resistances getting open-circuited, what would be the value of total power taken from the mains in each of the two cases?

10

17.a) Write short notes on dependent sources. Showing their schematic symbols.

5

b) Explain why three phase systems are preferred over single phase systems for transmission of power.

5