Name :
Roll No. :

Invigilator's Signature : \qquad

CS / B.TECH (ECE) / SEM-4 / EC-402 / 2011

2011

DIGITAL ELECTRONIC CIRCUITS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

> GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The Excess-3 representation of decimal 59 is
a) 01100010
b) 00111110
c) 10001100
d) none of these.
ii) The number of full address required to construct an m-bit parallel adder is
a) $m / 2$
b) $m-2$
c) m
d) $m+1$.

CS / B.TECH (ECE) / SEM-4 / EC-402 / 2011
iii) The 2's complement representation of (-1910 is

a) 101100
b) 101110
c) 101101
d) none of these.
iv) The maxterm corresponding to decimal 9 is
a) $A B^{\prime} C^{\prime} D$
b) $A+B^{\prime}+C^{\prime}+D$
c) $A^{\prime}+B+C+D^{\prime}$
d) $\quad A^{\prime} B C D^{\prime}$.
v) The number of comparators required in a 8 -bit flash type A / D converter is
a) 256
b) 255
c) 64
d) 8 .
vi) A 3-bit synchronous counter uses flip-flops with propagation delay of 20 ns each. The maximum possible time required for change of state will be
a) 60 ns
b) 40 ns
c) 20 ns
d) none of these.
vii) The number of EX-OR gates required for the conversion of 11011 to its equivalent Gray code is
a) 2
b) 3
c) 5
d) 4 .
viii) A mod-2 counter followed by a mod-5 counter is
a) same as a mod-5 counter followed by a mod-2 counter
b) a decade counter
c) a mod- 7 counter
d) none of these.
ix) Which family has better noise margin ?
a) ECL
b) DTL
c) TTL
d) MOS.
x) The number of D flip-flops required to design a mod-10 ring counter is
a) 5
b) 10
c) 9
d) 8 .

CS / B.TECH (ECE) / SEM-4 / EC-402 / 2011
xi) A two-input EX-OR gate can be used as ana inverter when one of its inputs is kept at logic

a) 0
b) 1
c) either 0 or 1
d) none of these.
xii) If the resolution of a D / A converter is approximately $0 \cdot 4 \%$ of its full scale range, it is
a) an 8-bit converter
b) a 10-bit converter
c) a 12-bit converter
d) a 16-bit converter.

GROUP - B
 (Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Design a Full Adder circuit using a decoder and other necessary logic gates. Assume that the decoder has all active low outputs.
3. Design a S-R flip-flop with the help of J-K flip-flop.
4. Implement a 16:1 MUX by using $4: 1$ MUX only. counters.

b) Calculate the frequency of 4-bit ripple counter, if the period of waveform at the last flip-flop is 64 microsecond.
6. Design a Binary to Gray code converter using PROM.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
7. a) Design a sequential circuit that implements the following state diagram. (Use D flip-flop)

b) Implement the following Boolean function using 8: 1 MUX :
$F(A, B, C, D)=\sum m(0,7,8,9,10,11,15)$.

CS / B.TECH (ECE) / SEM-4 / EC-402 / 2011
8. a) Design a MOD-6 synchronous

b) Implement the following function using $3 \times 4 \times 2$ PLA :

$$
F_{1}(A, B, C)=\sum m(3,5,6,7) \quad F_{2}(A, B, C)=\sum(0,2,4,7)
$$

9. a) Simplify the following function in SOP form using Quine MC- Cluskey method :
$F(A, B, C, D)=\sum m(0,1,4,7,9,11,13,15)+\sum d(3,5)$.
b) Describe the operation of a two-input NAND gate constructed with CMOS.
10. a) Design a combinational circuit for Excess-3 code to BCD conversion using minimum number of logic gates.
b) Describe the principle of operation of successive Approximation type A / D converter.

a) 4-bit magnitude comparator
b) Bi-directional shift register
c) PAL
d) Master-slave J-K flip-flop
e) EEPROM.
============
