B. Tech Degree VI Semester Examination, April 2009

EE 603 CONTROL SYSTEM I

(2006 Scheme)

Time: 3 Hours

Maximum Marks: 100

PART A

(Answer all questions)

(8x5=40)

- I. (a) What are frequency domain specification? Define any three.
 - (b) Define gain margin and phase margin.
 - (c) What are the characteristic of servo motors?
 - (d) What is stepper motor? Define full step, half step and micro step?
 - (e) What is 'P' controller and what are its advantages and disadvantages?
 - (f) What are the characteristic of lag compensation and lead compensation?
 - (g) Define controllability and observability.
 - (h) What is state observer? Define full order and reduced order state observer.

PART B

 $(4 \times 15=60)$

II. Sketch the bode plot for the following transfer function and determine phase margin and gain margin.

$$G(s) = \frac{75(1+0.25)}{s(s^2+165+100)}$$

OR

III. By Nyquist stability criterion determine the stability of closed loop system, whose open loop transfer function is given by

$$G(s)H(s) = \frac{\left(s+2\right)}{\left(s+1\right)\left(s-1\right)}$$

Comment on the stability of open loop and closed loop system.

IV. A unity feedback control system has an open loop transfer function

$$G(s) = \frac{K}{s(s^2 + 4s + 13)}$$

Sketch the root locus.

OR

- V. Explain the construction and working of Synchro Transmitter.
- VI. Consider the unity feed back system whose open loop transfer function is

$$G(s) = \frac{K}{s(s+3)(s+6)}$$

Design a lag lead compensator to meet the following specification.

(i) Velocity error constant, Kv=80 (ii) Phase margin, $\gamma \ge 35$.

OR

VII. Consider a unity feed back system with open loop transfer function,

$$G(s) = \frac{100}{(s+1)(s+2)(s+10)}$$

Design a PID controller, so that the phase margin of the system is 45° at a frequency of 4 rad/sec and the steady state error for unit ramp input is 0.1.

(Turn over)

VIII. Write the state equation for the system shown below, in which x_1, x_2 and x_3 constitute the state vector. Determine whether the system is completely controllable and observable.

IX. Consider a linear system described by transfer function $\frac{Y(s)}{u(s)} = \frac{10}{s(s+1)(s+2)}$

Design a feed back controller with a state feed back so that the closed loop poles are placed at $-2, -1 \pm j1$.

