	<u>Uiech</u>
Name:	
Roll No.:	An Annual Of Commission and Commission
Invigilator's Signature :	

CS/B.TECH (ECE-N)/SEM-3/EC-304/2011-12

2011 ANALOG ELECTRONIC CIRCUITS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1.	Choose	the	correct	alternat	ives to	r any	ten of	the i	following :
----	--------	-----	---------	----------	---------	-------	--------	-------	-------------

 $10 \times 1 = 10$

i)	In	active	region	of a	a BJT	the	emitter	junction	is	in
		bia	as and o	colle	ctor ju	nctio	n is	bias.		

- a) forward, reverse
- b) forward, forward
- c) reverse, forward
- d) reverse, reverse.
- ii) The maximum theoretical efficiency of a class B pushpull transistor amplifier is approximately
 - a) 25%

b) 50%

c) 70.7%

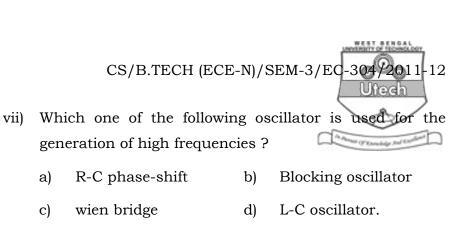
d) 78.5%.

3255-(N) [Turn over

CS/B.TECH (ECE-N)/SEM-3/EC-304/2011-12

- iii) The type of power amplifier which exhibits cross-over distortion in its output is
 - a) class A

b) class B


c) class C

- d) class AB.
- iv) An amplifier without feedback has a voltage gain of 50, input resistance of 1 k Ω and output resistance of 2.5 k Ω . The input resistance of the current-shunt negative feedback amplifier using the above amplifier with a feedback factor of 0.2 is
 - a) $\frac{1}{11} k\Omega$

b) $\frac{1}{5} k\Omega$

c) $5 k\Omega$

- d) 11 k Ω .
- v) In the analysis of a power amplifier, we prefer
 - a) equivalent circuit analysis
 - b) graphical method using load line
 - c) equivalent circuit analysis and graphical method using load line
 - d) none of these.
- vi) An instrumentation amplifier
 - a) is a differential amplifier
 - b) has a gain less than 1
 - c) has very high output impedance
 - d) has low CMRR.

viii) Operational amplifiers are used to amplify

a)

c)

c)

zero

- a) ac signals only b) dc signals only
- both ac and dc signals d) none of these. c)
- An ideal regulated power supply should have regulation ix) which
 - 50% a) maximum b)
- A Class B push-pull amplifier has an ac output of x) 10 watts. The dc power drum from the power supply

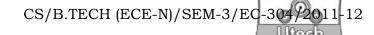
d)

75%.

- 10 watts b) 12.5 watts a)
- 20 watts. c) 15 watts d)
- The output voltage of IC7915 is xi)

under ideal condition is

- 15V a) b) - 15V
- d) - 5V. c) 5V
- xii) The Schmitt trigger is also known as
 - a) squiring circuit b) blocking oscillator
 - c) sweep circuit d) astable multivibrator.


GROUP - B

(Short Answer Type Questions)

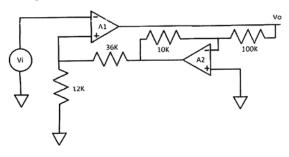
Answer any three of the following.

 $3 \times 5 = 15$

- 2. With a neat diagram, explain the principle of operation of an antilog amplifier.
- 3. Explain the operation of transformer coupled class-A power amplifier.
- Sketch the circuit of Wien-bridge oscillator. Explain the principle of operation & find an expression for the frequency of oscillation.
- 5. A phase-shift oscillator using a transistor has the following parameter values :
 - R_L = 3.3 kΩ; C = 0.01 $\mu F.$ Calculate the frequency of oscillators & h_{fe} required for operation of an amplifier.
- 6. What are the differences between Series and Shunt regulator? Draw a circuit diagram of a shunt regulator and explain its operation.

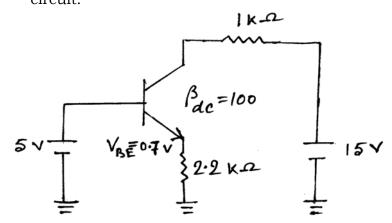
GROUP - C

(Long Answer Type Questions)


Answer any *three* of the following. $3 \times 15 = 45$

- 7. Explain the need for biasing of a transistor. Mention different schemes for biasing a transistor. Compare their merits and demerits. Define stability factors. Explain the self biasing arrangement of the transistor. (3 + 2 + 2) + 3 + 5
- 8. a) Draw the functional block diagram of 555 timer.
 - b) Explain the operation of a stable multivibrator using 555 timer. Derive the expressions for frequency in case of the output wareform.
 - c) How can you modify the above circuit for 50% duty cycle? 4 + (5 + 5) + 1
- 9. a) Derive the maximum efficiency of a class B push-pull amplifier. What is the major drawback of class B operation and how it can be avoided?
 - b) Explain the importance of $P_{C,max}$ in designing the power amplifier.
 - c) What is the function of tuned amplifier?
 - d) A transformer coupled class A power amplifier has maximum and minimum values of collector-emitter voltage of 25V and 2.5V respectively. Determine its collector efficiency. (4 + 2) + 3 + 3 + 3

CS/B.TECH (ECE-N)/SEM-3/EC-304/2011-12


- 10. a) What are the characteristics of an ideal op-amp?
 - b) Describe the functions of an op-amp asi) adder ii) integrator.
 - c) Determine the value of the voltage gain $\frac{V_0}{V_i}$ for the following circuit.


d) Explain logarithmic amplifier with circuit diagram.

$$2 + 4 + 4 + 5$$

11. a) Explain quiescent point and load line of a transistor amplifier. Find the Q point of the given emitter bias circuit.

b) Define hybrid parameters for a basic transistor circuit in common emitter configuration and give its hybrid model. (5 + 5) + 5

- - a) Switched Mode Power Supply
 - b) RC phase shift oscillator.
 - c) Voltage Controlled Oscillator.
 - d) PLL
 - e) Wave shaper
 - f) Colpitts oscillators.

3255-(N) 7 [Turn over