

Code No.: 5029/S

FACULTY OF ENGINEERING B.E. 3/4 (Civil) I Semester (Suppl.) Examination, June 2012 RÉINFORCED CEMENT CONCRETE

Toman aseria grunos de la [Max: Marks : 75] Time: 3 Hours1

Note: Answer all questions from Part A. Answer any five questions from Part B. The Company of the Co

	PART – A	(25 Marks	;)
1.	What are Bogue's compounds in cement?		2
2.	What is the influence of W/C ratio on strength and workability of concrete	e ?	3
3.	Define the terms a) Working Stress		^
	b) Limit State		2
4.	Derive the design constants for the combination of M-30 concrete and Fe steel using working stress method.	>-500	3
5.	Which of the assumptions indicate that over reinforced sections are not p in Limit state method?	ermitted	2
6.	Sketch the flexural, shear and torsional cracks in a beam.		3
7.	Why a reinforcing bar experiences more bond in compression than in ter	nsion?	2
8	Give a detailed classification of RC slabs.		3
9	. Differentiate between a long column and a short column.		2
10	. What measures would you adopt, if a footing fails in two-way shear chec	ck?	3
	PART-B	(50 Mark	:s)
11	. a) Discuss the various properties of concrete.		6
	b) Explain any two tests to determine the workability of concrete.		4
(TI	nis paper contains 2 pages) 1	P.T.	О.

Code No.: 5029/S

12.	Determine what working udl can be safely placed on a beam of 230 mm \times 370 mm effective dimensions reinforced with 4 bars of 16 mm diameter on the tension side and 2 bars of 16 mm on the compression side, both at an effective cover 30 mm. The beam is simply supported over an effective span of 6m. Adopt M-25 concrete and Fe-415 steel and use working stress method.	10
13.	Design an intermediate beam for a hall of 18 m \times 7 m effective dimensions, in which beams of 230 mm width are spaced at 3 m c/c and are cast integral with the slab of 125 mm thickness, which is to act a residential floor. Adopt M-25 concrete and Fe-415 steel and use limit state method.	10
14.	Design the reinforcement in a beam of 300 mm \times 600 mm subjected to a factored bending moment of 150 kN-m, a factored twisting moment of 15 kN-m and a factored shear of 100 kN. Adopt M-25 concrete and Fe-415 steel and use limit state method.	10
15.	Design a helically reinforced circular column to carry an axial factored load of 1800 kN. Adopt M-25 concrete and Fe-415 steel and use limit state method.	10
16.	Design a sloped square footing for a column of 300 mm \times 300 mm carrying an axial factored load of 1800 kN. Adopt M-25 concrete and Fe-415 steel. Take the safe bearing capacity of soil as 350 kN/m ² . Use limit state method.	10
17.	Write short notes on the following:	
	a) Yield line theory for RC slabs.	4
	b) Total deflection in a beam.	3
	c) Check for bond in a beam.	3