Reg. No. : \qquad
Name: \qquad

Third Semester B.Tech. (Reg./Sup./lmp. - Including Part Time) Degree Examination, November 2014
 (2007 Admn. Onwards)
 PT2K6/2K6EC/AEI 305 : NETWORK THEORY

Time : 3 Hours
Max. Marks : 100
Instructions: Answer all questions.
Assume missing data.
I. a) Distinguish between a first order and second order system with the help of
examples.
b) Find the value of ' R ' in the circuit such that maximum power transfer occurs.

Fig. 1-b
c) Give any 3 properties of driving point functions.
d) $F(S)=\frac{(S+5)}{\left.S^{2}+6 S+8\right) S}$, find $f(t)$.
e) Compare the features of M-derived and prototype filters.
f) Draw the pole zero diagram for the network function $V(S)=\frac{S}{(S+1)(S+3)}$. And also obtain $\mathrm{v}(\mathrm{t})$.
g) Give any 3 properties of positive real functions.
h) Check whether the given polynomial is Hurwitz. Why ?

$$
H(S)=(S+3)(S+5+5 j)(S+5-5 \mathrm{j})
$$

II. a) Determine the current I in the circuit given below using superposition theorem. 15

Fig. 2a
OR
b) Use Thevenin's theorem to find current through 10Ω resistor.

15

Fig. 2b
III. a) Find out the current ifor $t \geq 0$, if $i(0)=1$, for the given circuit.

Fig. 3a
OR
b) Derive the expression for coefficient of coupling, for a pair of mutually coupled circuits.
IV. a) Find the hand Y-parameters for the network given below: 15

Fig. IV-a
OR
b) Design a M-derived LPF (I and II Section), having $R_{o}=300 \Omega f_{c}=2 \mathrm{KHz}$ and infinite attenuation frequency $\mathrm{f}_{\alpha}=3.5 \mathrm{KHz}$.
V. a) Find the first Caur form and second Foster form of the network with driving point admittance $Y(S)=\frac{3(S+2)(S+5)}{S(S+3)}$. 15 OR
b) Explain the significance of Hurwitz polynomial. What are its properties?

